

Политехническая ул., 26, С.-Петербург, 194021 Телефон: (812) 297-2245 Факс: (812) 297-1017 post@mail.ioffe.ru http://www.ioffe.ru

Постростовые технологии фотоэлектрических преобразователей

Малевская Александра Вячеславовна E-mail: <u>amalevskaya@mail.ioffe.ru</u>

Формирование антиотражающего покрытия (АОП)

Подготовка:

•Фотолитография с нанесением, экспонированием и стабилизацией фоторезиста

Технологические процессы

•Жидкостное химическое травление контактного слоя GaAs

•Напыление АОП на основе слоев TiOxSiO2, Ta $_2\text{O}_5,$ $S_3\text{N}_4$

•Удаление фоторезиста

•Температурная стабилизация АОП

антиотражающее покрытие

наногетероструктура подложка из германия

Антиотражающее покрытие TiO_x/SiO₂ для каскадных солнечных элементов (КСЭ)

Спектральные зависимости коэффициентов отражения от поверхности гетероструктуры GaInP/GaAs/Ge с АОП покрытием TiO_x/SiO_2 для разных составов травителей для контактного слоя GaAs: 1 – 0,5% NH₄OH, 1,1% H₂O₂; 2 – 1,2% NH₄OH, 28% H₂O₂; 3 – 0,25% NH₄OH, 0,6% H₂O₂; 4 – 40% лимонная кислота, 6% H₂O₂.

Спектральные зависимости коэффициентов отражения от поверхности гетероструктуры AlInP/GaAs с АОП покрытием TiO_x/SiO₂ для разных режимов ионно-лучевой обработки: 1 – без обработки;

2,3,4 - при ускоряющее напряжение 100В, 300В, 500В соответственно.

Фотографии СЭМ поверхности солнечного элемента после нанесения АОП покрытия TiO_x/SiO_2 : (а) – без ионно-лучевой обработки, (б) – с ионно-лучевой обработкой, где 1 – шина омического контакта, 2 – TiO_x/SiO_2 , 3 – отслоение TiO_x/SiO_2 .

Формирование омических контактов

Подготовка:

Травление подложки \mathbf{V} Формирование антиотражающего

Влияние материала и конфигурации контактных шин на эффективность GaInP/GaAs/Ge КСЭ

Разработаны различные конфигурации контактных шин путем электро-химического осаждения слоев серебра и золота. Достигнуто:

-уменьшение потерь на затенение фоточувствительной поверхности КСЭ;

-увеличение степени поглощения солнечного излучения, за счет отражения от боковых стенок контактных шин;

-уменьшение омических потерь за счет увеличения толщины токосъемных шин;

-увеличение КПД КСЭ на 1,5% при степени концентрирования солнечного излучения 1000 солнц;

-увеличение рабочего диапазона степени концентрирования до 1500 солнц без существенного снижения КПД.

Фотографии СЭМ с осажденным слоем Au на поверхность структуры через маску фоторезиста (а) и через двуслойную маску из Si_3N_4 и фоторезиста (б).

Эффективность GaInP/GaAs/Ge КСЭ с контактными шинами выполненными из Ag и Au.

Фотографии СЭМ осажденного слоя Ag в виде усеченной пирамиды с широким нижнем основанием с использованием разной конфигурации масок фоторезиста.

Формирование разделительной меза-структуры

Формирование антиотражающего покрытия Подготовка: Технологические процессы \mathbf{V} Формирование омических контактов Альтернативные технологии: \mathbf{V} •Фотолитография с нанесением, Электрохимическое утолщение экспонированием и стабилизацией 1)Жидкостное химическое контактов фоторезиста травление \mathbf{V} Создание разделительной 2) Плазмо-химическое травление Маска фоторезиста меза-структуры \mathbf{V} Разделение пластины на чипы наногетероструктура подложка из германия Фронтальный омический контакт наногетероструктура подложка из германия

Травление подложки

 \mathbf{V}

Травление разделительной мезы в гетероструктуре GalnP/GalnAs/Ge

Профиль гетероструктуры GaInP/GaInAs/Ge после (а) жидкостного химического травления в травителях K₂Cr₂O₇:HBr:H₂O и глицерин:KOH:H₂O через маску, (б) в сильноразбавленном травителе HBr:H₂O₂:H₂O, (в) плазмо-химического травления в потоке рабочего газа BCl₃, где: 1 – маска фоторезиста, 2 – гетероструктура, 3 – германиевая подложка, 4 – маска TiO_x/SiO₂/фоторезист, 5 – боковая поверхность мезы

Темновые вольт-амперные характеристики КСЭ после создания разделительной меза-структуры методами: 1 – жидкостного химического травления, 2 – плазмо-химического травления.

Пассивация и защита мезы солнечных элементов на основе гетероструктуре GaInP/GaInAs/Ge

Фотография распределения электролюминесценции КСЭ после герметизации на теплоотводящей плате, где 1 – КСЭ, 2 – золотая проволока, 3 – защитное стекло, 4 – силикон, 5 – теплоотводящая плата.

Темновые вольтамперные характеристики КСЭ без защитного покрытия до проведения процесса термоциклирования при повышенной влажности (1) и после термоциклирования (2).

Темновые вольтамперные характеристики КСЭ до проведения процесса термоциклирования при повышенной влажности (1), после термоциклирования КСЭ с покрытием Si_3N_4 (2) и с герметизацией силиконом (3).

вывод

Разработка отдельных этапов пост-ростовой обработки гетероструктур позволяет достичь следующих результатов:

- Снизить отражение солнечного излучения от фоточувствительной поверхности гетероструктуры КСЭ, за счет разработки технологии нанесения антиотражающих покрытий;

- Снизить удельное переходное сопротивление омических контактов, при оптимизации материалов и технологии напыления омических контактов на основе многослойных покрытий: Cr/Au, Cr(Ni)/Ag/Au, Ag(Mn)/Ni/Au, Au(Ge)/Ni/Au;
- Увеличить проводимость контактных шин, за счет электро-химического осаждения материалов с высокой электрической проводимостью: Ag, Au;
- Снизить токи утечки при формировании разделительной меза структуры и нанесении пассивирующих и защитных покрытий.