

Натурные сравнительные испытания кремниевых мультикристаллического и гетероструктурного фотоэлектрических модулей.

Тарасенко А.Б.

Объединенный институт высоких температур РАН, г. Москва

«Высокоэффективные фотоэлектрические системы», Школа молодых ученых, 18.11.2020

КИУМ ФЭС – важнейшая характеристика для расчета сетевых фотоэлектрических станций согласно Распоряжению Правительства 449-Р и приложениям к нему.

КИУМ=(Выработка станции за год)/(Пиковая мощность станции*365 суток*24 часа).

аппроксимация для расчетов

Расчет выработки станции за несколько лет в почасовом режиме на основе исходных данных проекта NASA Power [<u>http://power.larc.nasa.gov/cgi-bin/hirestimeser.cgi</u>]. Пересчет с горизонтальной поверхности на горизонт с использованием оригинальной программы KM 2016 B.2.1, разработанной сотрудником ОИВТ РАН Михайлиным С.В., на основе подходов, изложенных в [John A. Duffie, William A. Beckman.Solar Engineering of Thermal Processes (4th Edition), May 2013, 936 p.]

«Высокоэффективные фотоэлектрические системы», Школа молодых ученых, 18.11.2020

Постановка задачи

Оценка выработки станции для условий г. Севастополь 45°

	STP-		
Hevel	270-20	STP-	
HVL 310	(multi)	305S	Модуль
310	270	305	Мощность макс STC, Вт
-0,0028	-0,0041	-0,004	Температурный коэфф., Вт/С
38.8	45	45	Noct, C
			размеры
1,67	1,65	1,65	ширина, м
1	0,99	0,99	высота, м
43,67	37,9	40,1	Напряжение XX,В
35,22	31,1	33	Напряжение МРР,В
9,35	9,15	9,71	Ток КЗ, А
8,69	8,69	9,25	Ток МРР, А
22	26	24	Модулей последовательно
120	117	112	Модулей в параллель
2640	3042	2688	Модулей всего на инвертор
			Проверка сумм. Мощности,
818,4	821,34	819,84	кВт

Паспортные характеристики модулей не демонстрируют преимущества гетероструктурной технологии. Кроме того, в условиях высоких широт температурный коэффициент порой ограничивает выработку. Необходим прямой или косвенный учет спектра солнечной радиации.

То есть корректная ф-ла (2):

 $P_{mod} = P_{STC}^{*}(A/1000)^{*}(1-g^{*}(T_{op}-25))^{*}f(A),$

f(A)=1 для классических кристаллических модулей «Высокоэффективные фотоэлектрические системы», Школа молодых ученых, 18.11.2020

Экспериментальные методы

Внешний вид стенда в ходе сравнительных испытаний гетероструктурного (справа, TCM-150H) и мультикристаллического (слева, TopraySolar TPS 150) модулей. Угол наклона к горизонту 70°, отклонение от ориентации на юг - 40° (юго-восток)

Архивация данных по токам и напряжениям 1 раз в 10 сек на SD-карту архиватора OBEH MCД 200. Солнечная радиация измеряется пиранометром Kipp&Zonnen с АЦП MB110-224.2A и заносится в тот же архив с той же скважностью. По выработанным данным определяется мощность модулей, далее численным интегрированием по времени – энергия. Сравниваются суточные данные по выработке, приведенные к паспортной мощности модуля.

Перечень элементов схемы

Поз. обозначение	Наименование		
R1, r3	Токовые шунты 75ШС 20-0,5		
SPV1	Испытуемый фотоэлектрический модуль		
U1, U3	Аналогово-цифровые преобразователи ОВЕН МВ 110-224.2А		
R2, r4	Делители напряжения		
K1, k2, k3	Автоматический выключатель Schneider Electric BA47 C16		
U2	Контроллер заряда фотоэлектрический Morningstar Sunsaver MPPT		
	15L с экстремальным регулятором мощности		
U4	Лабораторный источник питания GMG 5-30		
C1	Суперконденсаторная батарея Феникс 16 В 200 Ф		
VD1	Обратный диод Д115		

Экспериментальные методы

Емкость батареи СК 100 Ф

Емкость батареи СК 200 Ф

Почему суперконденсаторный накопитель энергии?

- Необходимость питания собственных нужд экстремального регулятора мощности солнечной батареи на столь малых мощностях (большую мощность не допускают ограничения по площади и доступным средствам);
- Деградация аккумулятора при полных разрядах достаточно быстрая, а неполные разряды за ночь, так же как и работа на деградировавший аккумулятор, приводят к занижению выработки. Деградация СК протекает существенно медленнее.

Опасения искажений в работе контроллера из-за существенно меньшего внутреннего сопротивления СК потребовали сравнительных испытаний на модулях TopRay Solar TPS 150 (для сравнения использовалась аккумуляторная батарея Delta 1217), которые завершились подбором емкости батареи СК в 200 Ф

Дата		Выработка	
	Выработка СБ1	СБ2 (АКБ),	
	(СК) <i>,</i> Вт*ч	Вт*ч	Δ, %
25.09.2019	243,65	320,95	-24,1
26.09.2019	243,65	320,95	-24,1
27.09.2019	289,11	314,44	-8,1
28.09.2019	233,89	254,44	-8,1
29.09.2019	61,71	85,03	-27,4
30.09.2019	25,61	51,34	-50,1
01.10.2019	60,08	87,73	-31,5
02.10.2019	89,29	117,21	-23,8
03.10.2019	429,78	429,16	0,1
04.10.2019	27,63	53,11	-48,0
05.10.2019	146,41	172,93	-15,3
06.10.2019	20,6	45,3	-54,5
07.10.2019	76,28	103,75	-26,5
08.10.2019	282,58	232,53	21,5
09.10.2019	56,24	65,12	-13,6
10.10.2019	16,02	42,53	-62,3
11.10.2019	16,02	42,53	-62,3
12.10.2019	46,39	72,8	-36,3
13.10.2019	120,85	134,23	-10,0
14.10.2019	120,11	148,58	-19,2
15.10.2019	45,98	69,69	-34,0
16.10.2019	298,9	324	-7,7
17.10.2019	407,33	373,89	8,9
18.10.2019	100,35	123,42	-18,7

Дата	Выработка СБ1	Выработка СБ2	
	(СК) <i>,</i> Вт*ч	(АКБ) <i>,</i> Вт*ч	Δ, %
21.11.2019	60,09	88,54	-32,1
22.11.2019	298,69	261,94	14,0
23.11.2019	264,17	215,27	22,7
24.11.2019	121,32	103,4	17,3
25.11.2019	113,61	86,63	31,1
26.11.2019	33,7	28,3	19,1
27.11.2019	12	10,6	13,2
28.11.2019	12	11	9,1
29.11.2019	8	7,9	1,3
30.11.2019	9,4	9,1	3,3

В то же время можно отметить, что при совсем низком уровне инсоляции (от 150 Вт/м² и ниже) фотоэлектрический модуль с суперконденсаторным накопителем работает хуже в силу быстроты протекающих в накопителе процессов заряда и разряда, на которые не всегда успевает реагировать стандартный контроллер заряда

Результаты экспериментов

Прибавка в выработке относительно мультикристаллического аналога реализуется за счет слоев аморфного кремния, расширяющих зону захватываемого спектра, что и проявляется при преобладании рассеянного излучения в пасмурные дни. В солнечные дни мощности модулей становятся близки (работа с рассеянным излучением становится актуальной в утренние и вечерние сумерки), что и определяет снижение разницы в выработке. «Высокоэффективные фотоэлектрические системы», Школа молодых ученых, 18.11.2020

Результаты экспериментов

Зависимость коэффициента использования установленной мощности HJT-модуля (148 Вт пик, STC) от суточной суммы солнечной радиации. Зависимость коэффициентов использования установленной мощности обоих модулей от суточной суммы солнечной радиации

Наиболее ярко превосходство гетероструктурного модуля проявляется в условиях пониженной инсоляции, которая за время наблюдений (3 недели июля 2020 г) в основном связана с преобладанием облачных дней. Также очевидно, что суточная сумма солнечной радиации не учитывает всех нюансов облачности и ее распределения по дню.

- 1. Для проведения натурных испытаний гетероструктурного модуля разработана и апробирована схема, имитирующая маломощную автономную энергоустановку с суперконденсаторным накопителем, что позволяет снизить влияние деградации аккумуляторов на результаты испытаний.
- 2. Экспериментально определен КИУМ гетероструктурного модуля в условиях г. Москвы в течение нескольких месяцев.
- Выполнены сравнительные испытания гетероструктурного и мультикристаллического кремниевых модулей близкой мощности. Показана возможность увеличения выработки энергии гетероструктурным модулем на 5-15% в пасмурные дни. При высокой инсоляции разница находится в пределах погрешности измерений.
- 4. Необходимо формирование и анализ почасовых последовательностей данных наблюдений для уточнения зависимости выработки от часовых сумм солнечной радиации и уточнения погрешностей такого эмпирического подхода.