Атомно-слоевое осаждение для роста соединений AIIIBV на кремнии

А.С. Гудовских, А.В. Уваров, И.А. Морозов, А.И. Баранов, А.С. Букатин, Д.А. Кудряшов

Alferov University, St.-Petersburg, Russia

Н.А. Калюжный, С.А. Минтаиров

Ioffe Institute RAS, St.-Petersburg, Russia

Outline

- Motivation
- PE-ALD GaP/Si interface properties
- Thermal annealing of PE-ALD GaP/Si interface (RTA, MOCVD)
- First MOCVD growth on PE-ALD GaP/Si templates
- Conclusions

Motivation

Integration of III-V with Si

J F Geisz and D J Friedman Semicond. Sci. Technol. 17 (2002) 769–777

Motivation

Epitaxial growth of GaP requires high temperature

Pre-treatment for Si surface deoxidation and reconstruction High T 900°C

Growth 600-750 °C

Significant lifetime degradation of Si wafers after annealing in

MOVPE chamber R. Varache et al. // Energy Procedia 77 (2015) 493-499

MBE chamber

L. Ding et al. // Energy Procedia 92 (2016) 617

Low temperature nucleation process, which provides 2D growth?

Atomic layer deposition (ALD)

Low Temperature Plasma enhanced atomic layer deposition (PE-ALD)

Oxford Plasmalab 100 PECVD

GaP layers were grown on Si (100) 4° cut off substrates at **T=380** °**C**

Continues H₂ plasma (pseudo ALD mode)

TEM of GaP/Si interface

H₂-plasma process

Microcrystalline structure of GaP films

Epitaxial 2D growth of 3-5 nm GaP on Si substrate

Bright field TEM

Dark field TEM

Hydrogen plasma leads to damage of Si substrate (30-50 nm near to the interface)

Photoelectrical properties of n-GaP/p-Si

No H₂ plasma (real ALD mode)

TEM of GaP/Si interface

No H₂-plasma process

Filtered TEM image

Microcrystalline structure of GaP films

Epitaxial 2D growth of 3-5 nm GaP on Si substrate

Bright field TEM

Dark field TEM

damage of Si substrate is not observed by TEM

Photoelectrical properties of n-GaP/p-Si

Presence of hydrogen?

Band diagram of n-GaP/p-Si

Influence of thermal annealing

RTA

amorphous-GaP/Si Quantum efficiency Open circuit voltage 0.6 0.7 ≻ initial **P** diffusion 0.6 0.5 →750 C n-p junction in Si →900 C 0.5 **2**^{0.4} **2** 0.3 0.4 **Drop of ម្ព** 0.3 ("red edge" Si lifetime 0.2 0.2 degradation **Drastic decrease** <u>D.1</u> Strong Recombination 0.1 400 500 600 700 800 900 300 0 GaP crystallization? 400 600 800 1000 1200 Temperature (°C) Wavelength (nm) 10¹³ -150 Sheet electron concentration (cm⁻²) Electron mobility 10⁻¹ Ns Surface conductivity Electron mobility (cm² V⁻¹s⁻¹) 10⁻² 10¹² 100 b * ເ b[∞] 10 10¹¹ 50 10⁻⁵ 10⁻⁶ -10¹⁰ 400 500 600 700 800 900 1000 500 600 700 800 900 300 300 400 500 600 700 800 900 1000 300 400 Temperature (C) **Temperature (C)** T, ℃

MOCVD chamber annealing (30 min, PH₃ environment)

The same trend as for RTA

Simulations

First MOCVD growth of GaP on GaP/Si templates

XRD for GaP grown on GaP/Si templates

Epitaxial growth was achieved!

Raman spectra of GaP on Si

650 °C

725 °C

First n-GaP/p-Si test cell grown by MOCVD on GaP/Si template

epi-GaP/Si interface fabricated by PE-ALD is stable for further MOCVD growth of GaP at the temperature up to 750 °C

Conclusions

- epi-GaP/Si interface fabricated by PE-ALD are stable with temperature up to 750 C
- PE-ALD GaP without H₂ plasma provides better interface properties
- Ar plasma surface activation during PE-ALD could provide better crystalline properties for further GaP growth

Thank you very much for your attention!

This work was also supported in part by the Russian Scientific Foundation under grant number 17-19-01482.