

Оптические и электрические потери в структурах высокоэффективных GaInP/GaAs/Ge солнечных элементов

С.А.Минтаиров

группа МОСГФЭ, лаб. Фотоэлектрических преобразователей, ФТИ им. А.Ф. Иоффе

• Санкт-Петербург, 2018

Актуальность использования

Космическое применение

Наземные условия

- КПД в более чем в 2 раза превышает КПД Si
- Срок службы в 3 раза больше

- Наивысшая эффективность
- Перспективы значительного снижения стоимости в концентраторных установках

Солнечный спектр

• Космический спектр близок к спектру АЧТ при Т=5800К

• спектр распределен в широком интервале энергий фотонов

• Спектр характеризуется параметром «air mass» (AM)

Эффективность СЭ

КЗ

А=1 дифф. механизм

А=2 рек. механизм

A>3 тунн. механизм

Многопереходные СЭ

Снижение потерь

Широкозонные переходы эффективнее преобразуют фотоны высоких энергий. Узкозонные расширяют спектральную чувствительность СЭ

Необходимость развязки p-n переходов

Туннельные диоды должны обладать минимальным сопротивлением и не поглощать полезное излучение

Необходимо обеспечить равенство количества фотонов, преобразуемых отдельными переходами

Материалы для каскадных СЭ

Современные каскадные СЭ включают p-n переходы из GaInP/GaInA/Ge

Широкозонные переходы эффективнее преобразуют фотоны высоких энергий. Узкозонные расширяют спектральную чувствительность СЭ

Материалы для каскадных СЭ

Каскадные СЭ нового поколения

Необходим материал с *E_g*=1 эВ метаморфные СЭ. Теоретически оптимальный дизайн

GalnAsN

при росте происходит образование доменов GaN и InAs

Квантоворазмерные структуры GalnAs недостаток в не согласовании по параметру решетки

Каскадные СЭ нового поколения

GalnP/GaAs/GalnNAs MBE, lattice matched, dilute nitrides, grown on GaAs

GalnP/GaAs/GalnAs

Inverted metamorphic

GalnP/GaAs/ /GalnAsP/GalnAs Four-junction, wafer bonding, lattice matched grown on GaAs and InP

46-46,7%, 500 suns "Fraunhofer ISE (Soitec)", Emcore

Структура GaInP/GaAs/Ge CЭ

Согласование токов

потери

- Поглощение В тпб слоях И туннельного диода
- Поглощение в слоях широкоз. окна «Горячие» носители
- Отражение ΟΤ гетерограниц
- Сопротивление туннельных диодов

СЭ на основе GaInP

металлич. конт.		
p^{++} -контактный	Анти-отраж.	
слой	покрытие	
р-широкозонное окно		
<i>p</i> -GaInP эмиттер		
<i>n</i> -GaInP база (подложка)		
п-ТПБ		
n-GaAs подложка		
металлический контакт		

металлич. конт.		
<i>n</i> ⁺⁺ -контактный	Анти-отраж.	
слой	покрытие	
п-широкозонное окно		
<i>n</i> -GaInP эмиттер		
<i>p</i> -GaInP база (подложка)		
<i>р-</i> ТПБ		
<i>p</i> -GaAs подложка		
металлический контакт		

- Наличие неомичного последовательного сопротивления сильно ограничивает эффективность *p-n* полярности
- Неомичность возникает в слое широкозонного окна

СЭ на основе GaInP

- Большой разрыв зон для гетеропереходов GaAs/AllnP и AllnP/GaInP для *p-n* полярности
- Использование слоя *p*+-GalnP в качестве тыльного барьера для *n-р* полярности

Барьер в нижнем туннельном диоде

n+-GaAs контакт		
n-AllnP окно		
n-GaInP эмиттер	50 нм	
p-GalnР база	400-800 нм	
р+-GaInP TПБ	100 нм	
тунн. диод		
n-AlGaAs окно	30 нм	
n-GaAs эмиттер	100 нм	
р-GaAs база	3200 нм	
p-AlGaAs ТПБ	100 нм	
р-AlGalnP барьер для ТД		
тунн. диод		
n-AlGalnP барьер для ТД		
n-GaInP окно		
Ge эмиттер		
Ge база		

Возникал потенциальный ⁵ барьер для протекания с носителей с нижнем туннельном диоде

0

Как и в случае GalnP
элементов большие
разрывы зон для
гетеропереходов
GaAs/AllnP и
AllnP/GalnP для *p-n* полярности

x (cm)

Барьер в нижнем туннельном диоде

Встречная фотоЭДС

- Обнаружена встречная фотоЭДС, проявляемая при кратности более 30солнц
- Составлена упрощенная эквивалентная схема каскадного элемента

Встречная фотоЭДС

- Использован слой *p*-(Al_{0.2}Ga_{0.8})_{0.52}In_{0.48}P в качестве ТПБ верхнего субэлемента (Eg=2.06 эВ (600 нм)
- Использование слоя p-(Al_xGa_{1-ч})_{0.52}ln_{0.48}P при «х»<25% не создает барьера для основных носителей
- КПД повысился на 4%

Оптические потери

- ток, генерируемый Ge каскадом, повышается на 4.5 мА/см2 при замене GalnAs окна на GalnP
- использование оптимальной толщины GaInP слоя (170-180 нм) приводит к дополнительному возрастанию фототока на 1.5 мА/см2

Оптические потери

- 1 Al0.8Ga0.2As толщиной 30 нм,
- 2 Al0.8Ga0.2As толщиной 115 нм,
- 3 Al0.4Ga0.6As толщиной 110 нм,
- 4 Ga0.51In0.49Р толщиной 100 нм.

2 p⁺-Ga_{0.51}In_{0.49}P(50 нм)/n-Al_{0.8}Ga_{0.2}As (115 нм).

- 1 p⁺⁺-Al_{0.4}Ga_{0.6}As (20 нм)/n⁺⁺-GaAs(20 нм), 2 - p⁺⁺-Al_{0.4}Ga_{0.6}As (15 нм)/n⁺⁺-Ga_{0.51}In_{0.49}P(20 нм).
- использования оптимизированных толщин широкозонного окна повышает ток на 0.5 мА/см2
- ток возрастает на 1.5 мА/см2 за счет оптимизации поглощения в верхнем туннельном диоде
- использование материала AllnP между GalnP и GalnAs субэлементами приводит к увеличению отражения света

Спасибо за внимание