

Оптические и электрические потери в структурах высокоэффективных GaInP/GaAs/Ge солнечных элементов

С.А.Минтаиров

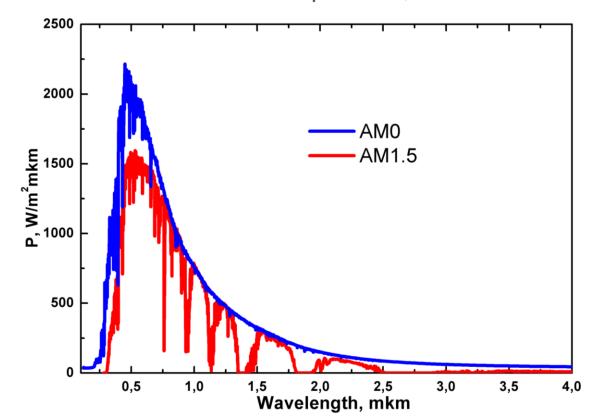
группа МОСГФЭ, лаб. Фотоэлектрических преобразователей, ФТИ им. А.Ф. Иоффе

• Санкт-Петербург, 2018

Актуальность использования

Космическое применение

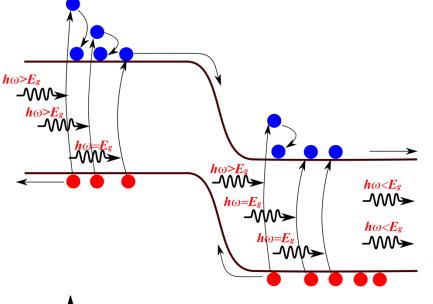
Наземные условия


- КПД в более чем в 2 раза превышает КПД Si
- Срок службы в 3 раза больше

- Наивысшая эффективность
- Перспективы значительного снижения стоимости в концентраторных установках

Солнечный спектр

- Космический спектр близок к спектру АЧТ при Т=5800К
 - спектр распределен в широком интервале энергий фотонов
- Спектр характеризуется параметром «air mass» (AM)
 - космический спектр АМО, наземный АМ1.5



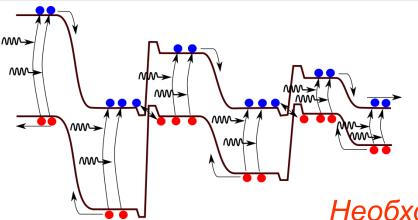
Плотность потока энергии:

- AM0 1366 BT/m^2 ,
- AM1.5 1000 BT/M²

Эффективность СЭ

Термализация носителей

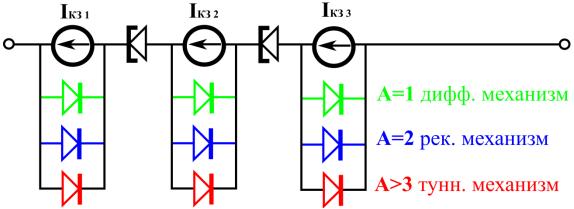
Вся избыточная энергия фотонов тратится на нагрев кристаллической решетки Потеря фотонов с низкой


энергией

Полупроводники прозрачны для фотонов с энергией меньше E_q

Многопереходные СЭ

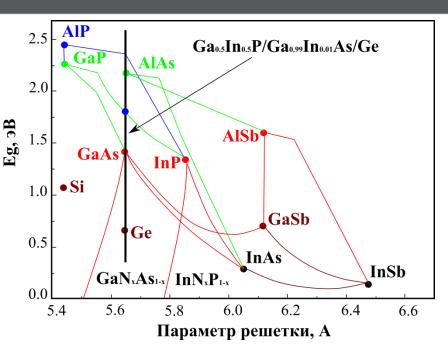
Снижение потерь


Широкозонные переходы эффективнее преобразуют фотоны высоких энергий. Узкозонные расширяют спектральную чувствительность СЭ

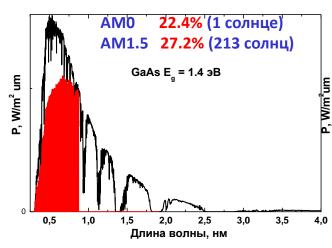
Необходимость развязки р-п переходов

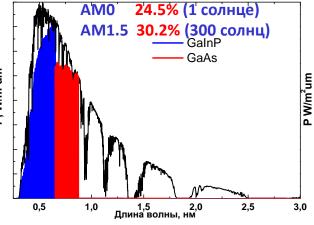
Туннельные диоды должны обладать минимальным сопротивлением и не поглощать полезное излучение

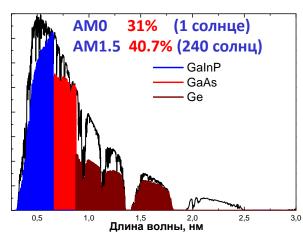
$$I_{K3} = min(I_{K31}, I_{K32}, I_{K33})$$


$$U_{XX}$$
= sum(U_{XX1} , U_{XX2} , U_{XX3})

Необходимо обеспечить равенство количества фотонов, преобразуемых отдельными переходами

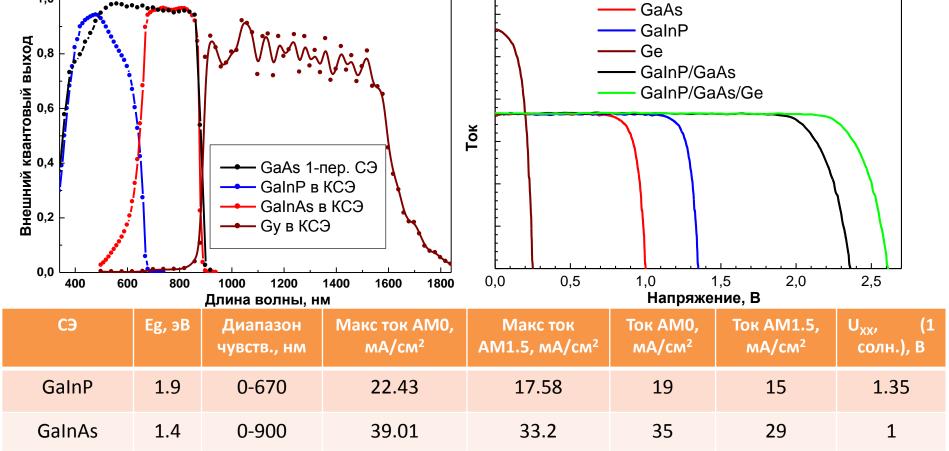

Материалы для каскадных СЭ





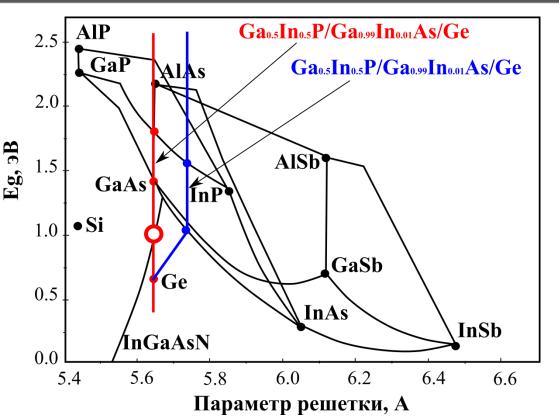
Современные каскадные СЭ включают p-n переходы из GaInP/GaInA/Ge

Широкозонные переходы эффективнее преобразуют фотоны высоких энергий. Узкозонные расширяют спектральную чувствительность СЭ



Материалы для каскадных СЭ

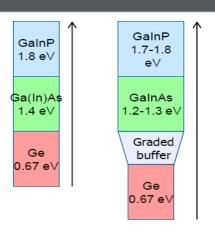
1,0

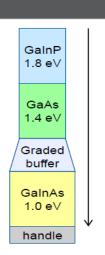


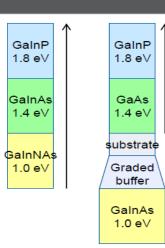
GaInP	1.9	0-670	22.43	17.58	19	15	1.35
GalnAs	1.4	0-900	39.01	33.2	35	29	1
Ge	0.66	0-1900	76.09	62.41	55	45	0.25
GaInP/GaAs	-	0-900	19.5	16.6	18	14.5	2.35
GalnP/ GalnAs/Ge	-	0-1900	19.5	19.5	18	14.5	2.6

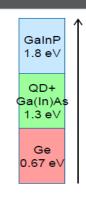
Каскадные СЭ нового поколения

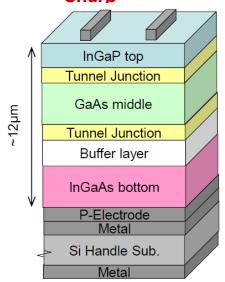
Необходим материал с E_g =1 эВ метаморфные СЭ. Теоретически оптимальный дизайн

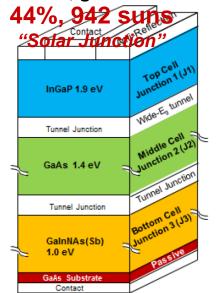

GalnAsN

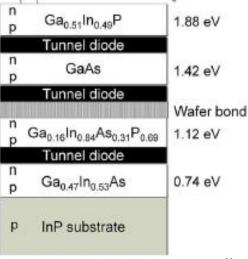

при росте происходит образование доменов GaN и InAs


Квантоворазмерные структуры GalnAs недостаток в не согласовании по параметру решетки

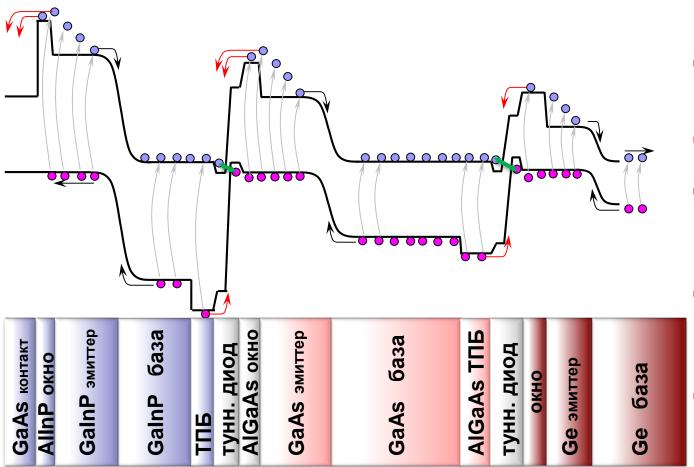

Каскадные СЭ нового поколения






GalnP/GaAs/GalnAs Inverted metamorphic 44.4%, 302 suns "Sharp"

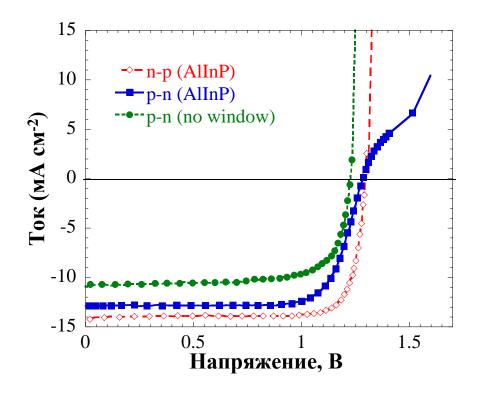
GalnP/GaAs/GalnNAs MBE, lattice matched, dilute nitrides, grown on GaAs



GalnP/GaAs//GalnAsP/GalnAs
Four-junction, wafer bonding, lattice matched grown on GaAs and InP
46-46,7%, 500 suns
"Fraunhofer ISE (Soitec)", Emcore

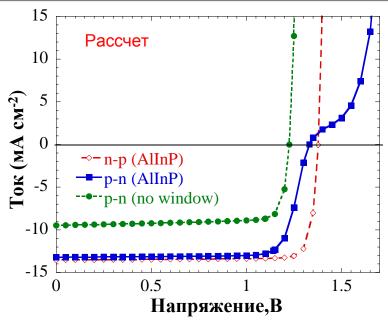
Структура GaInP/GaAs/Ge СЭ

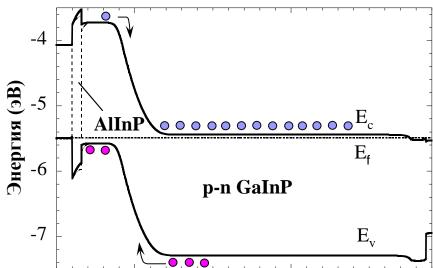
<u>Структурные</u> <u>потери</u>

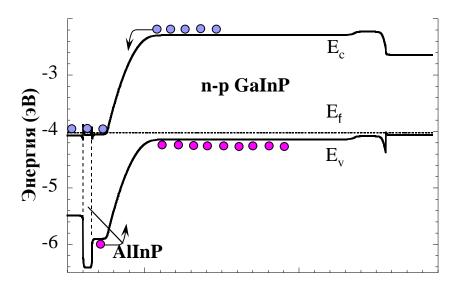

- Собирание носителей
- Согласование токов
- Поглощение в слоях ТПБ и туннельного диода
- Поглощение в слоях широкоз. окна «Горячие» носители
- · Отражение от гетерограниц
- Сопротивление туннельных диодов

СЭ на основе GaInP

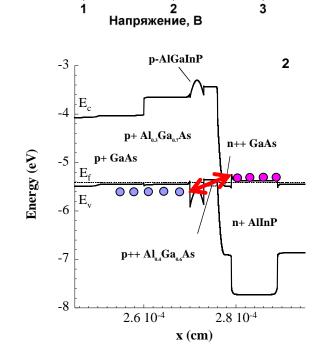
металлич. конт.		
p^{++} -контактный	Анти-отраж.	
слой	покрытие	
р-широкозонное окно		
p-GaInP эмиттер		
<i>n</i> -GaInP база (подложка)		
п-ТПБ		
n-GaAs подложка		
металлический контакт		


металлич. конт.				
n^{++} -контактный	Анти-отраж.			
слой	покрытие			
п-широкозонное окно				
<i>n</i> -GaInP эмиттер				
<i>p</i> -GaInP база (подложка)				
р-ТПБ				
p-GaAs подложка				
металлический контакт				


- Наличие неомичного последовательного сопротивления сильно ограничивает эффективность *p-п* полярности
- Неомичность возникает в слое широкозонного окна


СЭ на основе GaInP

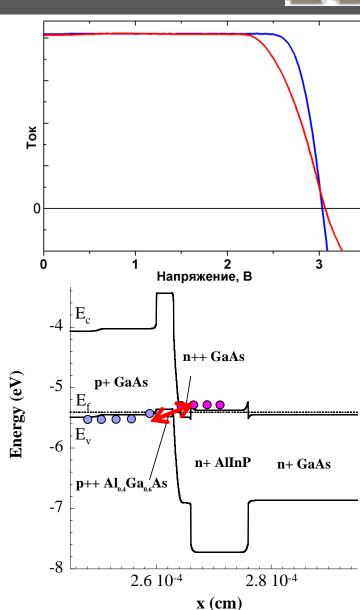
- Большой разрыв зон для гетеропереходов GaAs/AllnP и AllnP/GaInP для *p-n* полярности
- Использование слоя p+-GalnP в качестве тыльного барьера для n-p полярности



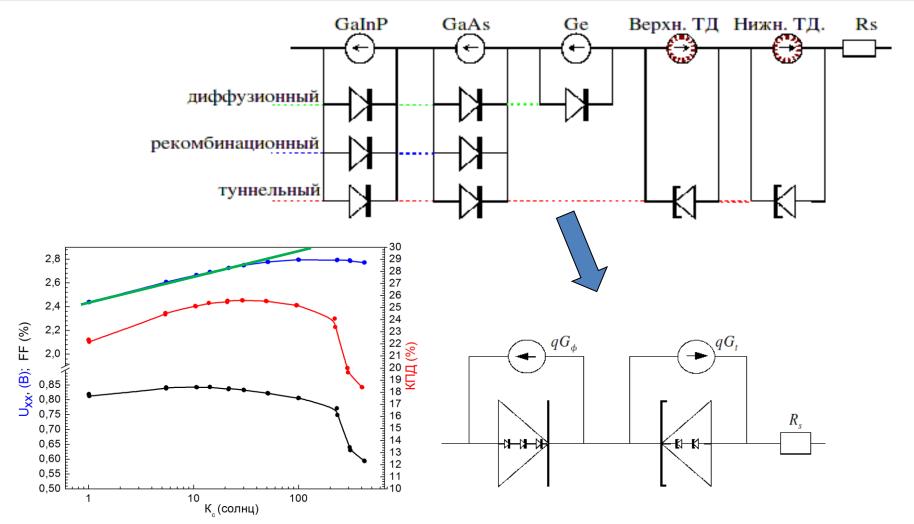
Барьер в нижнем туннельном диоде

n+-GaAs контакт					
n-AllnP окно					
n-GaInP эмиттер	50 нм				
p-GaInP база	400-800 нм				
р+-GalnP ТПБ	100 нм				
тунн. диод					
n-AlGaAs окно	30 нм				
n-GaAs эмиттер	100 нм				
p-GaAs база	3200 нм				
p-AlGaAs ТПБ	100 нм				
p-AlGainP барьер для ТД					
тунн. диод					
n-AlGalnP барьер для ТД					
n-GaInP окно					
Ge эмиттер					
Ge база					

- Возникал потенциальный барьер для протекания носителей с нижнем туннельном диоде
- Как и в случае GaInP элементов большие разрывы зон для гетеропереходов GaAs/AllnP и AllnP/GaInP для *p-п* полярности

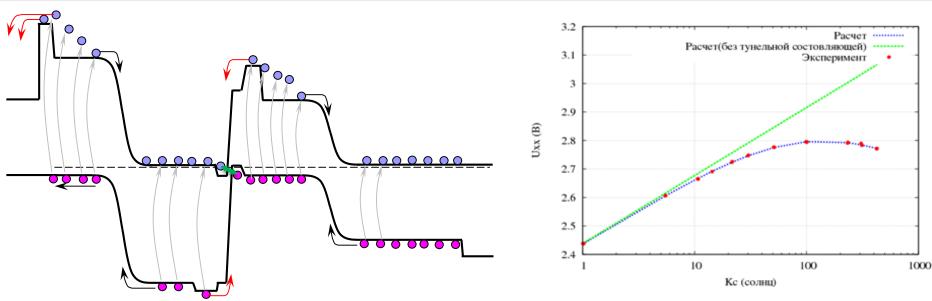

Барьер в нижнем туннельном диоде

n+-GaAs контакт			
n-GaInP эмиттер	50 нм		
p-GaInP база	400-800 нм		
р+-GalnP ТПБ	100 нм		
тунн. диод			
n-AlGaAs окно	30 нм		
n-GaAs эмиттер	100 нм		
p-GaAs база	3200 нм		
p-GalnP ТПБ	100 нм		
тунн. диод			
n-AlGalnP барьер для ТД			
n-GaInP окно			
Ge эмиттер			
Ge база			


■ Использование слоя *p*-GaInP в качестве тыльного барьера GaAs каскада и широкозонного барьера нижнего туннельного диода

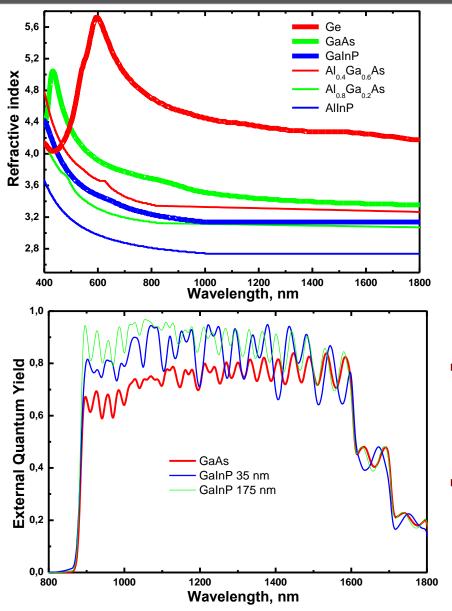
• КПД повысился на 3%

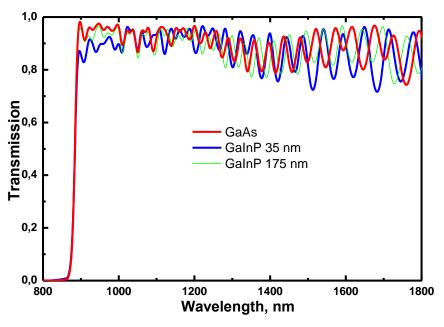
Встречная фотоЭДС



- Обнаружена встречная фотоЭДС, проявляемая при кратности более
 30солнц
- Составлена упрощенная эквивалентная схема каскадного элемента

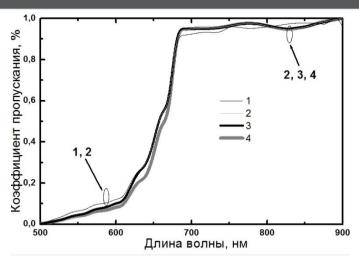
Встречная фотоЭДС

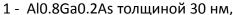




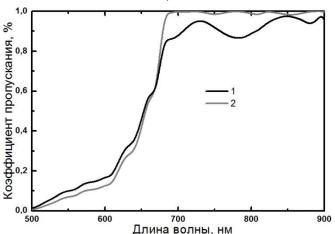
- Использован слой *p*-(Al_{0.2}Ga_{0.8})_{0.52}In_{0.48}P в качестве ТПБ верхнего субэлемента (Eg=2.06 эВ (600 нм)
- Использование слоя p-(Al_xGa_{1-ч})_{0.52}In_{0.48}P при «х»<25% не создает барьера для основных носителей
- КПД повысился на 4%

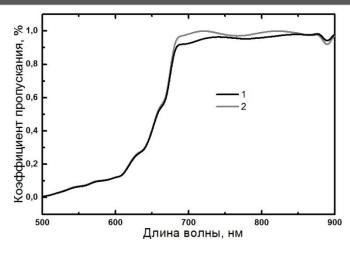
Оптические потери





- ток, генерируемый Ge каскадом, повышается на 4.5 мА/см2 при замене GalnAs окна на GalnP
- использование оптимальной толщины GaInP слоя (170-180 нм) приводит к дополнительному возрастанию фототока на 1.5 мА/см2


Оптические потери



- 2 Al0.8Ga0.2As толщиной 115 нм,
- 3 Al0.4Ga0.6As толщиной 110 нм,
- 4 Ga0.51In0.49Р толщиной 100 нм.

1 - p-Al $_{0.53}$ In $_{0.47}$ P (50 нм)/n-Al $_{0.53}$ In $_{0.47}$ P, 2 p $^+$ -Ga $_{0.51}$ In $_{0.49}$ P(50 нм)/n-Al $_{0.8}$ Ga $_{0.2}$ As (115 нм).

 $1 - p^{++} - Al_{0.4}Ga_{0.6}As$ (20 HM)/ $n^{++} - GaAs$ (20 HM),

 $2 - p^{++}$ -Al_{0.4}Ga_{0.6}As (15 нм)/n⁺⁺-Ga_{0.51}In_{0.49}P(20 нм).

- использования оптимизированных толщин широкозонного окна повышает ток на 0.5 мА/см2
- ток возрастает на 1.5 мА/см2 за счет оптимизации поглощения в верхнем туннельном диоде
- использование материала AllnP между GalnP и GalnAs субэлементами приводит к увеличению отражения света

Спасибо за внимание