Школа молодых ученых «Высокоэффективные солнечные фотоэнергосистемы» 7 Ноября 2018 г.

Фотоэлектрические преобразователи на основе квантоворазмерных гетероструктур

М.В. Максимов

Санкт-Петербургский национальный исследовательский Академический университет РАН

Содержание

- Проблема согласования токов в каскадных солнечных элементах GaInP/GaInA/Ge
- Стратегия увеличения КПД каскадных солнечных элементов за счет использования квантоворазмерных гетероструктур
- Солнечные элементы на основе:
 - квантовых точек
 - квантовых ям
 - гибридных гетроструктур "квантовые яма-точки"
- Заключение

Солнечный спектр

- Космический спектр близок к спектру АЧТ при Т=5800К
- Спектр распределен в широком интервале энергий фотонов
- Спектр характеризуется параметром «air mass» (AM)
- Космический спектр АМО, наземный АМ1.5

Плотность потока энергии:

- AM0 1366 Вт/м²,
- AM1.5 1000 Вт/м²

Варианты реализации мультикаскадных солнечных элементов

Материалы для каскадных СЭ

Современные каскадные СЭ GalnP/GalnA/Ge не позволяют реализовать идеальную конфигурацию запрещенных зон

Применение квантоворазмерных гетероструктур в каскадных СЭ

Применение квантоворазмерных гетероструктур в каскадных СЭ

Использование квантоворазмерных гетероструктур позволяет расширить спектральный диапазон фоточувствительности второго субэлемента (на основе GalnAs)

Некоторые особенности квантовых ям и квантовых точек

Квантовые точки

Относительно невысокое оптическое поглощение на один слой

+ Эффективная релаксация напряжений, можно последовательно выращивать 15-20 слоев

Квантовые ямы

+ Высокое поглощение

Для выращивания более трех напряженных КЯ необходимо использовать слои, компенсирующие напряжения ("strain balance")

Спектр энергетических состояний структур с квантовыми точками

Энергия

- 60 мэВ

- Присутствуют переходы с участием возбужденных состояний
- Необходимо учитывать состояния смачивающего слоя и матрицы

Однопереходный солнечный элемент с KT InGaAs

- Однопереходный СЭ выращен методом МПЭ
- Продемонстрирована принципиальная возможность увеличения фототока за счет поглощения фотонов в массиве КТ

Blokhin S.A. et al, Semiconductors, 43, 513 (2009)

 $J_{sc} = +0.22 \text{ mAcm}^{-2}$

	QD SC	Ref SC	Un.
FF	79.2	83.4	%
U _{oc}	0.84	1.04	V
η	18.32	23.77	%
J _{sc}	27.66	27.44	mAcm ⁻²

Использование массива квантовых точек

Wavelength (nm)

Компенсация упругих напряжений позволила складировать 40 слоев КТ

 $J_{sc} = +1.3 \text{ mAcm}^{-2}$

Bailey et al, IEEE J. Photovolt., 2, 269 (2012)

Davias	J_{sc}	V_{oc}	FF	η
Device	(mA/cm^2)	(Volts)	(%)	(%)
Control	22.47	1.039	80.0	13.8
10x QD	23.21	0.997	78.5	13.4
20x QD	23.54	0.918	76.8	12.2
40x QD	23.78	0.990	82.3	14.3

GaAs CЭ с InAs КТ, созданные методом МОГФЭ

- В і-области GaAs СЭ использовались КТ, сформированные по механизму Странского-Крастанова методом МОГФЭ
- Наблюдалось бимодальное распределение КТ по размерам
- Метод компенсации упругих напряжений («straine-balance») не применялся

Kalyuzhnyy,NA; Progress in Photovoltaics, v.24, 9 p. 1261 (2016).

GaAs CЭ с InAs КТ, созданные методом МОГФЭ

Wavelength, nm

- Не наблюдалось заметного уменьшения квантовой эффективности СЭ в области GaAs даже в случае использования 15 слоев КТ
- Рекордный (для InAs/GaAs квантовых точек) прирост фотогенерированного тока за счет поглощения подзоннных фотонов в перерасчете на 1 слой InAs KT (0.07 mAcm⁻²/layer)

Kalyuzhnyy,NA; Progress in Photovoltaics, v.24, 9 p. 1261 (2016).

Спектроскопия фототока массива КТ

Последовательное уменьшение фотоотклика состояний КТ с уменьшением температуры за счет подавления выброса носителей (термической активации)

Спектроскопия фототока массива связанных КТ

- Интенсивный фотоотклик от КТ даже при низких температурах
- Перекрытие волновых функций носителей в отдельных КТ в пределах колонны
- При низких температурах разделение носителей происходит в основном за счет в туннелирования

Массив квантовых точек в многопереходном СЭ

100 -J cell with ODs lavers 80 3-J cell w/o QDs layers EQE (%) 60 80 60 40 (%) €0 €0 €0 €0 20 880 900 940 920 Wavelength (nm) 0 650 700 900 950 600 750 800 850 Wavelength (nm)

Продемонстрировано увеличение эффективности трехпереходного СЭ за счет использование КТ

W.J. Ho al, Prog Photovolt Res Appl. 24, 551 (2016)

Добавление 50 слоев КТ: $J_{sc} = 15.43 (+0.66) \text{ mAcm}^2$ Efficiency = 33.5 (+1)% (AM 1.5, 1 sun)

Использование квантовых ям

22, 784 (2012)

Реальные структуры с квантовыми ямами и квантовыми точками

Монослойные флуктуации

Квантовые точки имеющие большой латеральный размер – плавные переход к квантовой яме

Флуктуации состава

Сверхплотный массив квантовых точек – возможно туннелирование

Создание и исследование нового типа наноструктур, которые бы одновременно обладали рядом преимуществ, присущих квантовым ямам и квантовым точкам

Рост и структурные свойства квантовых ямо-точек

Нанесение 4-16 монослоев $In_xGa_{1-x}As$ (0.3<x<0.5) методом MOCVD на 6° разориентированную подложку GaAs (100)

- КЯТ представляют собой плотный массив обогащенных In островков в Inобедненной остаточной КЯ.
- КЯТ имеют круглую или овальную форму с характерным продольным размером ~20-30 нм и высотой в 3 нм
- Островки имеют тенденцию собираться в удлиненные объекты, напоминающие нанопроволоки. Они располагаются в направлении [1-10], что соответствует краям атомных ступеней подложки.
- Также наблюдаются объекты (КТ) большей высоты (~7 нм)
- Плотность КТ растет с увеличением содержания In или толщины InGaAs

Влияние состава In_xGa_{1-x}As на оптические свойства КЯТ

 Структура, сформированная осаждением 16 монослоев In_{0.3}Ga_{0.7}As, демонстрирует одиночную узкую линию ФЛ. Типичная для КЯ температурная зависимость интенсивности и полуширины спектра ФЛ.

В спектрах структуры, сформированной осаждением 8.5 монослоев In_{0.4}Ga_{0.6}As проявляется дополнительное длинноволновое плечо, в отличии от типичных спектров КЯ.
При увеличении содержания In до 50%, в спектрах преобладают пики, связанные с КТ. Типичная для стандартных КТ температурная зависимость интенсивности и полуширины спектра ФЛ.

Однопереходные фотоэлектрические преобразователи на основе КЯТ

- Возможно осаждение до 20 рядов КЯТ без ухудшения структурного совершенства
- Значительное расширение спектрального диапазона чувствительности в длинноволновую сторону

Использование массива ям и ямо-проволок

Использование вицинальных подложек позволяет формировать структуры переходной размерности (Wire-on-Well, Quantum-Well-Dots)

Sugiyama et al, Prog Photovolt Res Appl.

Оценка КПД InGaP/InGaAs/Ge солнечного элемента

на основе квантовых яма-точек

QWD thick ness, ML	AM0			AM1,5		
	ΔV, V	ΔJ, mA/ Cm ²	Effici ency, %	Δν, ν	ΔJ, mA/ cm ²	Effici ency, %
Ref.	0	0	29.8	0	0	41.6
7	-0.19	+3.26	30.1	-0.19	+2.54	42.2
8	-0.33	+2.98	28.0	-0.33	+2.34	39.7
10	-0.60	-6.98	17.7	-0.60	-6.56	25.5

Использование экспериментальных данных для однопереходного СЭ на основе КЯТ при моделировании характеристик трехпереходного СЭ InGaP/InGaAs/Ge показало возможность увеличения его КПД на 0.3% для космического и на 0.6% для наземного спектров

Выводы

- Использование квантовых ям и квантовых точек позволяет заметно увеличить фототок каскадных солнечных элементов. Однако при этом падает напряжение холостого хода
- Для минимизации падения напряжения холостого хода и увеличения эффективности выброса и разделения носителей желательного использовать квантоворазмерные гетероструктуры с относительно малой энергией локализации электронов и дырок
- Экспериментальные результаты и теоретические оценки показали возможность увеличения КПД каскадных солнечных элементов за счет использования квантоворазмерных гетероструктур в InGaAs субэлементе

ФЭП с ударной ионизацией

A.J. Nozik / Physica E 14, 115 (2002)

Оптические свойства КЯ-КТ

Результаты оптических исследований позволяют сделать предположение о бимодальном распределении КТ