

Фотоэлектрические преобразователи на основе антимонида галлия

В. Хвостиков, лаборатория фотоэлектрических преобразователей

Получение преобразователей на основе GaSb диффузией цинка из газовой фазы

Спектры фоточувствительности элементов на основе GaSb с различной толщиной диффузионного эмиттера:

1 - 1.1 мкм, 2 - 0.9 мкм, 3 - 0.62 мкм, 4 - 0.32 мкм, 5 - 0.14 мкм. 6 - спектр отражения от просветленной поверхности GaSb (ZnS+MgF₂)

Установка жидкофазной эпитаксии для проведения ростовых и диффузионных процессов

Кассета для диффузионных процессов

Конструктивные особенности преобразователей на основе GaSb (диффузия цинка из газовой фазы)

1 - подложка; 2 - диффузионная область; 3 - просветляющее покрытие; 4 - адгезионный слой; 5- металлическая контактная сетка; 6 - призматическое покрытие.

Влияние диффузионного профиля на КПД преобразователей

Распределение атомов цинка в GaSb с исходной толщиной диффузионного р-эмиттера 850 нм (1). Толщина удаленного слоя: 1 – 0 нм; 2 – 80 нм; 3 – 160 нм; 4 - 240 нм; 5 – 320 нм; 6 – 400 нм; 7 – 480 нм; 8 – 560 нм.

Зависимость КПД от кратности концентрирования солнечного излучения (AM1.5D, Δλ=500-1820 нм) при различной глубине травления эмиттера.

Зависимость КПД ТФЭ-элементов на основе GaSb от температуры вольфрамового излучателя: *1* – GaSb-структура без утончения p-n-перехода; 2 – при глубине травления диффузионного слоя 320 нм.

Зависимость КПД солнечных элементов на основе GaSb (AM1.5D, 1000 Вт/м²) от глубины травления эмиттера при различных плотностях генерируемого фототока.

Особенности получения преобразователей на основе GaSb комбинацией жидкофазной эпитаксии и диффузии

вариант 3 (с фронтальным и тыльным эпитаксиальными слоями)

вариант 2 (диффузия в эпитаксиальный базовый слой)

вариант 1 (диффузия в подложку, тыльный эпитаксиальный *n*⁺-слой)

Зависимость фактора заполнения ВАХ от плотности фототока для фотоэлементов по варианту *1-3* в сравнении с диффузионным преобразователем (вариант4).

Двухпереходные механически стыкованные солнечные элементы

Эффективность преобразования солнечной энергии в тандеме из последовательно соединенных элементов, согласованных по току, в условиях АМ1.5, *Кс*=500 при *T*=50 °C. 2.0

Зависимость эффективности фотоэлектрического преобразования от ширины запрещенной зоны двухпереходного каскада в условиях АМО, *Кс*=100, *T*=50 C.

Достижения в мире двухпереходных для солнечных каскадов GaAs/GaSb

Тип элемента	Размер элемента см ²	КПД	Условия измерений	Источник
	Silementa, em			
GaSb (3a GaAs)		8.3 %	AM0, Kc=240	L.Fraas, J.Avery, EEE Transactions on Electron Devices 37(2), 1990, 443 – 449
GaAs/GaSb	0.05	30.5 %	AMO, Kc=100	S.Bailey, D.Flood, Prog. Photovolt. Res. Appl., 6, 1998, 1-14
GaAs/GaSb		31.1 %	AM1.5D, Kc=100	A.W.Bett, F.Dimroth, G.Stollwerck, O.V.Sulima. Appl. Phys. A, 69, 1999, 119-129
GaAs/GaSb	0.053	32.6 %	AM1.5, Kc=100	S.Bailey, D.Flood, Prog. Photovolt. Res. Appl., 6, 1998, 1-14
GaAs/GaSb		35.6 %	AM1.5, 25 °C	L.Fraas, J.Avery, EEE Transactions on Electron Devices 37(2), 1990, 443 – 449
GaAs/GaSb		32.5 %	AM1.5, N.O.T.	L.Fraas, J.Avery, EEE Transactions on Electron Devices 37(2), 1990, 443 – 449

Трехпереходные каскадные солнечные элементы

Параметры трехпереходного преобразователя и его субэлементов. [A.W.Bett et al. Proc. 17th EU-PVSEC, Munich, 2001].

Расчетная эффективность модуля со спектральным расцеплением солнечного излучения (AM1.5D, K_c =300) на основе трех однопереходных элементов (средний элемент с Eg_2 =1.42 эВ) в зависимости от значений Eg_1 и Eg_3 .

Оптическая схема и фотография фотоэлектрического модуля с расщеплением солнечного спектра: *1* – линза Френеля; *2,3* - дихроичные фильтры; *4* – верхний Al_xGa_{1-x}As фотоэлемент (*x* = 0.3-0.35); *5* – средний GaAs фотоэлемент; *6* – нижний GaSb фотоэлемент.

Зависимость коэффициента пропускания селективных фильтров от длины волны падающего излучения. 1 – фильтр, отражающий солнечное излучение на широкозонный элемент, 2- фильтр, отражающий солнечное излучение на средний GaAs элемент.

Системы с расщеплением светового потока

Системы с расщеплением светового потока (ФТИ им. А.Ф. Иоффе)

No	Тип элемента	Eg,əB	Рабочий диапазон, нм	Эффективность при кратности концентрирования К _с ~200		Максимально достигнутые эффективности	
1	AlGaAs	1.86	340-688	200	17.56	66	19.01
2	GaAs	1.42	688-900	200	12.12	194	12.13
3	GaSb	0.72	900-1840	200	8.38	213	8.44
	Суммарно	ое значение	эффективности	I	38.06		39.58

Термофотоэлектрические (ТФЭ) сисиемы

ТФЭ-система в общий виде

Спектры излучения абсолютно черного тела

Спектры излучения селективного эмиттера (фото) на основе Y_2O_3 с покрытием Er_2O_3 или Yb_2O_3

Селективные эмиттеры в ТФЭ-системах

Эмиттер типа «mantle» для сжигания потока газа под оболочкой, полученной с использованием растворов, содержащих редкоземельные компоненты (Yb, Er, Y). Оболочка фиксируется керамическими кольцами AlO_X на металлическом стержне.

Цилиндрические перфорированные эмиттеры на основе дисилицида молибдена $MoSi_2$ без покрытия и с дополнительным нанесением Er_2O_3 . Термически устойчивы в потоке газа и температуре до 1700 °C.

Эмиттер на основе SiC без покрытия, с покрытием иттербием и эрбием.

Фотоэлементы ФТИ им. А.Ф. Иоффе под селективными эмиттерами (Paul Scherrer Institute)

Лучшую комбинацию дают преобразователь ФТИ им. А.Ф. Иоффе и эмиттер Er2O3 (153 мВт/см² в сравнении с 125 мВт/см² для фотоэлемента JX Crystals).

Преобразователь ФТИ

Преобразователь JX Crystals

Элементы ФТИ им. А.Ф. Иоффе под «серыми» и селективными эмиттерами Paul Scherrer Institut

Излучаемая энергия в зависимости от толщины пленки Er:YAG (плазменное напыление) на MoSi₂ и температуры эмиттера.

Возможности ТФЭ системы с Si- и GaSb-преобразователями и эмиттерами разных типов.

Substrate/film	Photocell	$I_{\rm sc}~({\rm A~cm^{-2}})$	$V_{\rm oc}$ (V)	$MPP (mW cm^{-2})$	FF (%)	$T_{\mathbf{p}}$ (°C)
MoSi ₂ (4.5 mm)	Si	0.033	0.66	15.4	70.8	1549
_ ` ` ` `	GaSb	0.237	0.41	60.7	63.2	
$MoSi_2$ (2 mm)	Si	0.045	0.67	21	70.2	1529
	GaSb	0.262	0.41	69.6	64	
MoSi ₂ (2 mm)/2 µm Pt	Si	0.0395	0.67	18.3	69.3	1630
	GaSb	0.149	0.39	36.1	62.1	
MoSi ₂ /Er:YAG (400 µm)	Si	0.02	0.63	8.5	67.6	1607
	GaSb	0.135	0.39	32.2	61.5	
MoSi ₂ /Er ₂ O ₃ (100 μm)	Si	0.019	0.63	8	66.1	1572
	GaSb	0.155	0.39	37.9	62	
MoSi ₂ /Yb ₂ O ₃ (140 μm)	Si	0.05	0.68	23.9	70.7	1650
	GaSb	0.222	0.41	57.1	63.1	
Er_2O_3 (400 µm)	Si	0.063	0.69	32.3	74.8	
	GaSb	0.336	0.42	92.3	65.1	
SSiC (2 mm)	Si	0.04	0.67	18.4	69.1	1490
	GaSb	0.375	0.43	104.3	65	

ТФЭ генераторы с Si-фотоэлементами

Эмиттер: Yb₂O₃ Водяное охлаждение Подводимая тепловая мощность: 1985 Вт Выходная электрическая мощность: 56 Вт КПД системы: 2.8 % КПД системы: от 0.54 % (при SiC-эмиттере) до 1.0 % (при иттербиевом эмиттере)

Эмиттеры на основе фотонных кристаллов

Спектры излучения фотонных кристаллов

Внешний вид фотонных кристаллов

Монтаж преобразователей в ТФЭ-модуль

24 или 32 преобразователя площадью 1x1 см²

15 последовательно соединенных преобразователей площадью 1х2 см².

Террасированные фотоэлементы 8 мм х 9 мм

Топливные термофотоэлектрические генераторы ФТИ им. А.Ф.Иоффе

Поперечный разрез и фотография генератора: 1-подача пропана или бутана; 2-подача воздуха; 3конвекционно-охлаждаемый радиатор; 4-танталовый ИК-эмиттер; 5-фотоэлектрический преобразователь; 6-теплоотвод; 7-отходящие газы; 8-крышка; 9кварцевое окно; 10-тепловая изоляция.

Экспериментальные портативные генераторы ФТИ им. А.Ф. Иоффе - с малогабаритной спиртовкой (а) и газом (бутан) (б-в, 7-10 Вт электрической мощности).

Эмиттеры для топливных ТФЭ-систем (ФТИ им. А.Ф.Иоффе)

Зона сгорания топлива в термофотоэлектрическом генераторе

Металлический (а, б) и SiC (в, г) эмиттеры, нагреваемые газовой горелкой

Термофотоэлектрические генераторы с концентрированным солнечным излучением (ФТИ им. А.Ф.Иоффе)

Металлический эмиттер под концентрированным солнечным излучением линзы Френеля

Расчетные зависимости эффективности фотоэлектрического преобразования в СТФЭ модуле на основе GaSb от температуры эмиттера.

Конструктивные особенности термофотоэлектрических генераторов

генератор конического типа с плоским фотоприёмным модулем (а), вольфрамовым

генератор цилиндрического типа

Характеристики цилиндрической ТФЭ системы с металлическим эмиттером, нагреваемых концентрированным солнечным излучением или газовой горелкой

Формирование тыльного зеркала

Зависимость коэффициента отражения «подзонных» фотонов а) от концентрации свободных носителей заряда (толщина подложки 450 мкм); б) от толщины подложки $(n = 2 \cdot 10^{17} \text{ см}^{-3}).$

Разработки JX Crystals Inc. в области термофотоэлектрических генераторов с преобразователями на основе GaSb

72 фотопреобразователя в панели 5 см х 26 см:

Voc = 11.94B FF = 0.68 Isc = 18.76 A Pmax = 152 BT

Создана линейка генераторов от 20 Вт до 4 кВт, в частности, Midnight Sun (12 В, 80 Вт) и портативный генератор с воздушным охлаждением (показан в работе с радио).

Преобразователи лазерного излучения

Максимальные значения монохроматического КПД для величин фототока $i_{\phi} = 0.1, 1.0, 10 \text{ A} \cdot \text{сm}^{-2}$ (линии 1, 2, 3 соответственно) в зависимости от граничной длины волны полупроводникового материала ФЭП; 4, 5, 6, 7, – КПД преобразования энергии монохроматического излучения для идеализированных ФЭП на основе InGaP, GaAs, GaSb и Ge соответственно в зависимости от длины волны преобразуемого излучения.

Теоретический предел КПД фотопреобразователей на основе GaAs и GaSb для излучения лазеров, выполненных на основе различных материалов

	Лазер	КПД фотодетекторов		
Материал лазера	Длина волны, нм	ФЭП на основе GaAs	ФЭП на основе InGaAs и GaSb	
AlGaInP	650	55	20	
AlGaAs	840	75	27	
YAG:Nd	1060	-	35	
InGaAsP	1300		40	
InGaAsP	1550	-	45	

Передача лазерной энергии на расстояние

Окно прозрачности атмосферы (а) и оптического волокна (б)

Параметры преобразователей лазерного излучения в зависимости от метода их получения

Спектральная чувствительность преобразователей, полученных диффузией в подложку (1) и в эпитаксиальный базовый слой (2, 3). Коэффициент затенения 20% (1, 2) и 10% (3).

Длина	КПД, %			
волны	Диффузия в	Диффузия в	Диффузия в	
лазера, нм	подложку.	эпитаксиаль-	эпитаксиаль-	
	затенение	ный слой,	ный слой,	
	20%	затенение	затенение	
		20%	10%	
1550	28.4	35.8	40.3	
1640	25.9	37.0	41.6	
1700	18.1	32.9	36.6	

Напаянные на теплоотвод приемники лазерного излучения с круглой фотоактивной поверхностью

Эффективность преобразователя на разных длинах волн лазера

λ = 1680 нм 50 $\lambda = 1600 \text{ нм}$ 45 λ = 1550 нм η, % 40 35 = 1680 нм = 1600 нм 30 = 1550 nm 25 20 10 100 Плотность тока, A/см²

Зависимость КПД преобразования фотоэлементов площадью 2 мм² от плотности фототока при их облучении монохроматическим излучением с длиной волны: 1 – 1680 нм, 2 – 1550 нм, 3 – 1315 нм.

N	Длина волны, мкм	Ј , А/см ²	КПД, %	
1	1.315		38.0	
2	1.55	100	45.0	
3	1.60	до 100	10.0	
4	1.68		49.0	

Зависимость КПД преобразования GaSb фотоэлементов на основе GaSb площадью 0,02 см² (1) и 1 см² (2) от плотности фототока для длин волн падающего излучения 1550, 1600 и 1680 нм.

Преобразователи при однородном и неоднородном лазерном излучении

Зависимость выходных параметров преобразователя при однородной (слева) и (справа) частично неоднородной (лазер с длиной волны 1550 нм) засветкой. Размер фотоэлемента 2 мм х 2 мм.

Перспективы использования преобразователей лазерного излучения

- дистанционное энергопитание беспилотных летательных аппаратов и передача энергии из космоса на Землю посредством лазерного луча;
- энергоснабжение в наземных условиях в качестве альтернативы традиционным кабельным линиям электропередачи;
- беспроводная зарядка малогабаритной электроники бытового назначения;
- беспроводная зарядка элементов питания имплантируемых кардиостимуляторов и других медицинских автономных аппаратов поддержания жизнедеятельности организма;
- функционирование робототехнических устройств и телекоммуникационного оборудования в опасных для человека районах;
- передача электроэнергии по оптическому волокну для питания сейсмических датчиков и создания на Арктическом шельфе сети морских станций точного картирования землетрясений, подводных ядерных взрывов, движения океанических плит, определение зон сейсмической опасности, месторождений углеводородов и т. п.

