

Твердые растворы и функциональные покрытия для солнечных элементов

Пащенко А.С.

к.ф.-м.н., в.н.с.

лаборатория полупроводниковых гетероструктур для СВЧ-электроники и фотоники

Школа для молодых ученых

«Высокоэффективные солнечные фотоэнергосистемы»

СПб, 07.11.2019

СОДЕРЖАНИЕ

Многокомпонентные твердые растворы

Свойства

Проблемы

Выращивание

Гетероструктуры AllnPSbAs/InAs для ТФП

Гетероструктуры AlGaAs/Si и GaP/Si

Гетероструктуры AllnGaPAs/GaAs/Si

Функциональные покрытия

Необратимые потери энергии в СЭ Способы уменьшения потерь Просветляющие покрытия (ARC) Типы материалов для ARC Световые ловушки Эффект плазмонного резонанса Результаты TiO₂-Ag Результаты ПВБ-Ag

Многокомпонентные твердые растворы для СЭ

МНОГОКОМПОНЕНТНЫЕ ТВЕРДЫЕ РАСТВОРЫ

МНОГОКОМПОНЕНТНЫЕ ТВЕРДЫЕ РАСТВОРЫ Свойства

Кузнецов В.В., Лунин Л.С., Ратушный В.И. Гетероструктуры на основе четверных и пятерных твердых растворов соединений А^{III}В^V. – Ростов н/Д.: Изд-во СКНЦ ВШ, 2003. -376 с.: ил.

МНОГОКОМПОНЕНТНЫЕ ТВЕРДЫЕ РАСТВОРЫ Свойства

Типы четырехкомпонентных твердых растворов

 $I) \qquad A_x^1 A_{1-x}^2 B_y^3 B_{1-y}^4$

II) $A_{x_1}^1 A_{x_2}^2 A_{1-x_1-x_2}^3 B^4$

III) $A^1 B_{y_1}^2 B_{1-y_1}^3 B_{1-y_1-y_2}^4$

Типы пятикомпонентных твердых растворов

I) $A_x^1 A_{1-x}^2 B_y^3 B_z^4 B_{1-y-z}^5$

II)
$$A_x^1 A_{1-x}^2 A_{1-x-y}^3 B_z^4 B_{1-z}^5$$

Только 3 ТР типа I и 3 ТР типа II могут существовать в полном диапазоне концентраций

МНОГОКОМПОНЕНТНЫЕ ТВЕРДЫЕ РАСТВОРЫ

Кривая *1* - энергетический разрыв между L-долиной и профилем тяжелых дырок от концентрации x_{Sb} в TP GaAs_{1-x}Sb_x [Rosenbaum and Woolley (1975)].

Кривые 2-4 зависимость ширины запрещенной зоны TP GaAs_{1-x}Sb_x от состава. T=100 K, 3 - T=210 K, 1,4 -T=300 K. [Taylor and Fortin (1970))].

1. Steele, Julian, Structural and optical studies of $GaAs_{1-x}Bi_x$ and $p-Bi_20_3$ for optoelectronic devices, Doctor of Philosophy thesis, School of Physics, University of Wollongong, 2015.

2. M. Levinshtein, Michael Shur. Handbook Series on Semiconductor Parameters: Ternary and quaternary III-V compounds. World Scientific, 1999, 205 p.

МНОГОКОМПОНЕНТНЫЕ ТВЕРДЫЕ РАСТВОРЫ Свойства

Радиусы химических элементов, входящих в состав МТР на основе AIIIBV.

Подгруппа	Химический элемент	Ковалентный тетраэдрический радиус, нм	Атомный радиус, нм
IIIb	Al	0,126	0,143
	Ga	0,126	0,139
	In	0,144	0,166
Vb	Р	0,11	0,13
	As	0,118	0,148
	Sb	0,136	0,161
	Bi	0,146	0,182

МНОГОКОМПОНЕНТНЫЕ ТВЕРДЫЕ РАСТВОРЫ Проблемы

- Расчет фазовых равновесий (состав ТР от температуры) На точность расчета существенно влияют: учет первой или второй сфер взаимодействия компонентов твердого раствора; добавление компонентов.
- Термодинамическая устойчивость (спинодальный или бинодальный распад) Определяет стабильные, метастабильные или полностью не стабильные области существования твердых растворов.
- Упругие напряжения в гетероструктуре Как правило сужают область существования твердого раствора.
- Коэффициент термического расширения В случае 4 и 5 компонентных ТР учет КТР приводит к уменьшению области изопериодических составов.
- Распределение компонентов по толщине слоя Особенно актуально при жидкофазной эпитаксии

MBE

- Необходимо регулировать отношение компонент V группы при выращивании тонких пленок MTP (As, Bi, Sb, P).
- Ограничение по содержанию элементов V группы в составе ТР
- Образование Al, In, Ga, Bi капель

P. Ludewig, Z. Bushell, L. Nattermann, N. Knaub, W. Stolz and K. Volz. J. Cryst. Growth 396, 95 (2014)

MOVPE

- Требует относительно высоких температур эпитаксии.
- Т_{подл} < 450°С проблемы с не полным разложением металлорганических соединений
- Сегрегация элементов V группы
- Образование Al, In, Ga, Bi капель

E. Sterzer, N. Knaub, P. Ludewig, R. Straubinger, A. Beyer and K. Volz, J. Cryst. Growth 408, 71 (2014).

МНОГОКОМПОНЕНТНЫЕ ТВЕРДЫЕ РАСТВОРЫ Свойства

Синтез из жидкой фазы

- влияние состава ТР;
- влияние градиента температур;
- влияние толщины жидкой зоны;
- Подпитка раствора расплава

Гетероструктуры GalnSbAsPBi/GaSb при *x*_{Bi}: а) 0,35 мол. дол.; б) 0,02 мол. дол.

б) с подпиткой из твердой фазы InAIPAs.

Отклонения от закона Вегарда

Гетероструктуры Al_xGa_yIn_{1-x-y}As_zP_{1-z} /GaAs(100)

П.В. Середин, А.В. Глотов, Э.П. Домашевская, А.С. Леньшин, М.С. Смирнов, И.Н. Арсентьев, Д.А. Винокуров, А.Л. Станкевич, И.С. Тарасов. ФТП, 2012, том 46, вып. 6.

Оцененный параметр решетки по Вегарду а=5.6501 А; коэффициент деформации выращенной пленки составил ε=-0.0012

Влияние рассогласования параметров решеток на свойства гетерограницы

б) Да/а=0,001 a) ∆a/a= - 0,21 в) ∆а/а=0,3

Фотографии сколов гетероструктур GalnAsP/InP

Влияние кристаллографической ориентации на свойства гетерограницы

Alfimova, D.L., Lunin, L.S. & Lunina, M.L. J. Synch. Investig. (2014) 8: 612.

слоя InAsSbP на InAs (111)

(×4500)

Поверхность эпитаксиального Поверхность эпитаксиального слоя InAsSbP на InAs (100)

Prog. Photovolt: Res. Appl. (2016). doi: 10.1002/pip.2815

ТЕМ-изображения семислойных слоев КТ: a) толщина GaAs 15 нм (образец A); b) GaAs/Al_{0,6}GaAsSb_{0,1} /GaAs (толщиной 5/5/5 нм) (образец B); c) GaAsSb/Al_{0,6}GaAsSb_{0,1}/GaAs (5/5/5 нм) (образец C).

Пятикомпонентные твердые растворы, которые могут быть использованы для солнечных элементов

Гетероинтерфейс	Eg, эB	Применение	
AllnGaAsSb/GaSb 0,34–1,49			
AllnGaPSb/GaSb	0,34–1,49	Фотоэлектрические	
GalnPAsSb/InP AlGalnPSb/InAs AlGalnPSb/InP AlGalnPSb/GaSb	0,71–1,35 0,44–1,12 0,89–1,40 0,37–1,19	преобразователи с E _g =0.9 – 1.1 эВ	
AlGaInAsSb/InP AlGaInAsSb/InAs AlGaInAsSb/GaSb	0,71–1,75 0,31–1,37 0,26–1,33	Термофотоэлектрические преобразователи	

МНОГОКОМПОНЕНТНЫЕ ТВЕРДЫЕ РАСТВОРЫ Преимущества

- Расширение спектрального диапазона для полупроводниковых гетероструктур.
- Изменение ширины запрещенной зоны независимо от параметра решетки для изопериодных составов.
- ✓ Возможность получения ТР изопериодных с подложками А³В⁵, в том числе с кремниевой подложкой.
- ✓ Увеличение числа компонентов в твердых растворах расширяет диапазон составов согласованных по КТР и параметру решетки одновременно.
- В ряде случаев позволяют улучшить структурное совершенство гетерограницы.

МНОГОКОМПОНЕНТНЫЕ ТВЕРДЫЕ РАСТВОРЫ Гетероструктуры AlinPSbAs/InAs для ТФП

p-AlInPSbAs

n-AlInPSbAs

n-InAs подложка

Конструкция ТФЭ на основе гетероструктуры AllnPSbAs/InAs

Параметры выращивания:

ПЖТФ, 2018, Том 44, вып. 23

- интервал температур 773-873 К;
- эпитаксиальные слои твердых растворов Al_xIn_{1-x}P_ySb_zAs_{1-x-y} с тем же периодом решетки и КТР как у подложки InAs были получены в области составов 0.1≤x≤0.3 и 0.2≤y≤0.3;
- в качестве жидкой зоны использовали раствор расплав чистых In, Al, P, Sb, As толщиной 10 - 100 µm.

Кривые дифракционного отражения гетероструктур: 1 – InSbAs/InAs, 2- InPSbAs/InAs, 3- AlInPSbAs/InAs. Wavelenght, µm Спектры фотолюминесценции гетероструктур: 1 – InSbAs/InAs, 2- InPSbAs/InAs, 3- AlInPSbAs/InAs.

InPSbAs/n-InAs.

МНОГОКОМПОНЕНТНЫЕ ТВЕРДЫЕ РАСТВОРЫ Гетероструктуры AlGaAs/Si и GaP/Si

Л.С. Лунин, М.Л. Лунина, О.В. Девицкий, И.А. Сысоев // Физика и техника полупроводников, 2017, том 51, вып. 3. с. 403-408.

МНОГОКОМПОНЕНТНЫЕ ТВЕРДЫЕ РАСТВОРЫ Гетероструктуры AllnGaPAs/GaAs/Si

Кривые дифракционного отражения (кривые 1, 2) и спектры ФЛ (кривые 3, 4) пленок: AllnGaPAs (1, 3) и GaAs (2, 4), соответственно.

Спектры внешней квантовой чувствительности ФЭП AllnGaPAs/GaAs/Si.

Функциональные покрытия для СЭ Необратимые потери энергии в СЭ

- отражение солнечного излучения от поверхности преобразователя;
- прохождение части излучения через СЭ без поглощения в нём;
- рассеяние на тепловых колебаниях решётки избыточной энергии фотонов;
- рекомбинация образовавшихся пар н.з. на поверхностях и в объёме СЭ;
- внутреннее сопротивление СЭ.

Функциональные покрытия для СЭ Способы уменьшения потерь

- использование полупроводников с оптимальной для солнечного излучения шириной запрещённой зоны;
- направленное улучшение свойств полупроводниковой структуры путём её оптимального легирования и создания встроенных электрических полей;
- переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам;
- оптимизация конструктивных параметров ФЭП (глубины залегания p-n перехода, толщины базового слоя, частоты контактной сетки и др.);
- применение многофункциональных оптических покрытий, обеспечивающих просветление, терморегулирование и защиту ФЭП от космической радиации;
- разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;
- создание каскадных ФЭП из специально подобранных по ширине 33 полупроводников.

ARC покрытия - состоят из тонкого слоя диэлектрического материала со специально подобранной толщиной, так что интерференционные эффекты в покрытии приводят к тому, что волна, отраженная от верхней поверхности антиотражающего покрытия, не совпадает по фазе с волной, отраженной от поверхностей полупроводника. Эти противофазные отраженные волны деструктивно создают помехи друг другу, что приводит к нулевой чистой отраженной энергии.

 $n_1 = \sqrt{n_0 n_1}$

Использование λ/4 ARC для уменьшения поверхностного отражения

PV EDUCATION.ORG

Зависимость цвета ARC покрытия на основе SiO₂ от его толщины

Функциональные покрытия для СЭ Типы материалов для двухслойных покрытий

Система	год	Комментарии
MgF ₂ /CeO ₂	2000	Достигнут минимальный средний коэффициент отражения 1,87%, в диапазоне длин волн 0,4-1,1 мкм.
SiO, CeO ₂ и ZnS	2002	По сравнению с однослойными покрытиями были найдены области с низким коэффициентом отражения
Si ₃ N ₄ /SiO ₂	2005	В диапазоне 300-1150 нм при АМ1,5 покрытия SiO ₂ и Si ₃ N ₄ показали лучшую комбинацию с показателем отражения 0,044
MgF ₂ /SiN _x	2006	Были получены кремниевые солнечные элементы с эффективностью преобразования 16% на промышленной линии изготовления солнечных батарей
Al ₂ O ₃ и TiO ₂	2013	По сравнению с расчетным 0,408%, на практике средний коэффициент отражения в диапазоне 400- 680 нм составил 0,535 %.

Функциональные покрытия для СЭ Типы материалов для двухслойных покрытий

Система	год	Комментарии
SiO ₂ /TiO ₂	2014	был измерен спектр отражения DLAR, в результате чего при 630 нм наименьшее отражение – 2,3%, а в диапазоне 400-1000 нм среднее отражение – 7%.
Mesoporous silica and nano porous Silica	2015	Максимальный коэффициент пропускания был оценен выше 99,6% в видимой области 400-800 нм
MgF ₂ /ZnS	2016	Достигнута эффективность преобразования энергии 8,5%.
TiO ₂ /SiO ₂	2017	Двухслойная ARC обеспечивает повышение фототока до 14,54 мA/см ²

M. Moayedfar, M.K. Assadi // Rev. Adv. Mater. Sci. 53 (2018) 187-205.

Функциональные покрытия для СЭ Типы материалов для многослойных покрытий

Система	год	Комментарии
GaAs _{0.69} P _{0.31}	2015	Оптимизированные двух- и трехслойные ARC могут уменьшить отражательную способность до 5%.
(SiO ₂) _x (TiO ₂) _{1-x}	2012	Уменьшение общего отражения (от 43% до 28%) показывает оптимизированное 4-х слойное антиотражающее покрытие.
ZrO_2 -polymer composite/ spray-deposited TiO_2-compact Multilayer	2016	Эффективность преобразования СЭ улучшилась на 0,8% (с 15,19% до 15,88%). Ток повысился на 2 мА/см ⁻² (от 35,3 мА/см ⁻² до 37,2 мА/см ⁻²) по сравнению с одним слоем TiO ₂ ARC.
SiO ₂ /ZnS	2013	Для двухпереходных СЭ, изменения толщины пленки ARC менее 2 мкм и средней отражательной способности менее 0,07%

M. Moayedfar, M.K. Assadi // Rev. Adv. Mater. Sci. 53 (2018) 187-205.

Функциональные покрытия для СЭ Световые ловушки

Flat Silicon Substrate

Textured Silicon Substrate

Текстурирование поверхности кремния по технологии PERL

Текстурированная поликристаллическая кремниевая поверхность

Текстурирование поверхности кремния.

Функциональные покрытия для СЭ Световые ловушки

цветом для сравнения.

Функциональные покрытия для СЭ Световые ловушки

random reflector on rear of cell

Конструкция СЭ с тыльным отражателем Ламберта

Улавливание света с помощью рандомизированного отражателя в тыльной части СЭ. Свет, падающий под углом меньше критического выходит из СЭ. Если угол падения превышает критический, то полностью отражается внутри ячейки. В реальных устройствах фронтальная поверхность также текстурирована с использованием схем, таких как случайные пирамиды, упомянутые ранее.

Функциональные покрытия для СЭ Эффект плазмонного резонанса $\omega_p = \sqrt{\frac{n_e e^2}{m_e \varepsilon_0}}$

Локализованные поверхностные плазмоны

Если свободные электроны ограничены определенным конечным объемом металла колебания (что имеет В случае металлических наночастиц), место носят локализованный характер, а ИХ кванты называются локализованными поверхностными плазмонами.

В случае, если плазмонные колебания, возбуждаемые в разных частях кристалла, интерферируют конструктивно, возникает явление плазмонного резонанса. При этом существенно возрастает величина сечения экстинкции (поглощения + рассеяния). Положение пика в спектре, а также его величина, существенно зависят от формы частицы и ее размера.

Зависимость спектра экстинкции наночастиц серебра от формы частицы.

500

Wavelength (nm)

Cube

Cylinde

400

Sphere

Prism

12

10

8

6

300

Extinction Efficiency

для наночастиц сечение экстинкции может в 10 раз превосходить их геометрическое сечение, т. е. наночастицы способны поглощать и рассеивать фотоны даже вдали от своего физического положения.

Функциональные покрытия для С
Эффект плазмонного резонанса
$$\sigma_{\rm ext} = \frac{24\pi^2 R^3 \varepsilon_{\rm m}^{3/2}}{\lambda} \left[\frac{\varepsilon_{\rm i}}{(\varepsilon_{\rm r} + 2\varepsilon_{\rm m})^2 + \varepsilon_{\rm i}^2} \right]$$

Pyramid

600

700

Функциональные покрытия для СЭ Эффект плазмонного резонанса

- Спектральные свойства металлических наночастиц связаны с явлением резонанса локализованных поверхностных плазмонов;
- Положение, величина и форма спектров экстинкции металлических наночастиц зависят от формы и размера наночастиц;
- Варьируя размеры и форму металлической наночастицы, можно добиться того, что максимум сечения экстинкции попадет в нужный нам спектральный диапазон;
- Используя это свойство, можно существенно повысить эффективность работы солнечных батарей за счет поглощения разных частей солнечного спектра разными наночастицами.

Функциональные покрытия для СЭ Результаты TiO₂-Ag

Л.С. Лунин, М.Л. Лунина, А.А. Кравцов, И.А. Сысоев, А.В. Блинов, А.С. Пащенко// Физика и техника полупроводников. 2018. Т. 52, вып. 8, с. 860-864.

Функциональные покрытия для СЭ Результаты ТіО₂-Аg

Л.С. Лунин, М.Л. Лунина, А.А. Кравцов, И.А. Сысоев, А.В. Блинов, А.С. Пащенко// Физика и техника полупроводников. 2018. Т. 52, вып. 8, с. 860-864.

Функциональные покрытия для СЭ Результаты ТіО₂-Аg

Л.С. Лунин, М.Л. Лунина, А.А. Кравцов, И.А. Сысоев, А.В. Блинов, А.С. Пащенко// Физика и техника полупроводников. 2018. Т. 52, вып. 8, с. 860-864.

Функциональные покрытия для СЭ Результаты ПВБ-Аg

Функциональные покрытия для СЭ Результаты ПВБ-Аg

Спектр поглощения золя серебра (а) и спектр пропускания (б) пленок ПВБ-Ад на стекле

Функциональные покрытия для СЭ Результаты ПВБ-Аg

Спектральные зависимости внешнего квантового выхода кремниевых солнечных элементов с функциональным покрытием ПВБ-Аg с разной концентрацией серебра: а) С-серия; b) Н-серия.

Спасибо за внимание

Автор выражает благодарность всему коллективу лаборатории за полученные результаты и помощь в подготовке доклада