

ФТИ им. А.Ф. Иоффе лаб. Фотоэлектрических преобразователей

Высокоэффективные каскадные солнечные элементы

М.А. Минтаиров

mamint@mail.ioffe.ru 194021,Санкт-Петербург, Политехническая ул., 26 тел/факс: 8(812)2972173

Эффективность каскадных (многопереходных) солнечных элементов

Энергетические диаграммы полупроводников собственного, n- и p-типа

Энергия

В энергетическом спектре полупроводника есть две разрешенные зоны и запрещенная зона. В собственном полупроводнике нет свободных носителей он изолятор

Легирование донорной примесью запрещенную вводит В **30HV** уровень вместе с электроном. Электрон комнатной при температуре переходит в зону проводимости становится И свободным. Такой полупроводник обладает проводимостью n-типа (электронной)

Легирование акцепторной примесью вводит запрещенную пустой 30HV уровень. При комнатной температуре электрон из валентной зоны переходит на пустой уровень —образуются свободные дырки. Такой обладает полупроводник проводимостью р-типа (дырочной)

Полупроводник n-типа Полупроводник р-типа

Формирование р-п перехода

Энергия

При контакте полупроводников пр-типов, часть свободных И электронов (в приконтактной зоне) рекомбинирует с свободными Оставшиеся дырками. ИОНЫ (положительные В области И отрицательные p) В создают электрическое поле. Образуется изгиб Наличие 30H. электрического поля В p-n переходе лежит В основе фотовольтаического эффекта.

Фотовольтаический эффект в p-n переходе

Оптимальное Образовавшиеся в результате поглощение: Энергия поглощения фотонов электроннофотона ровна ширине дырочные пары разделяются запрещённой зоны полем p-n перехода, в результате чего течёт ток Поглощение термализацией: Часть поглощенной тратится кристаллической решетки Поглощение отсутствует: Энергии фотона недостаточно образования ДЛЯ электронно-дырочной пары

Координата

4/11

С

энергии

нагрев

на

Однопереходные солнечные элементы

Максимальное поглощение Максимальные потери на термализацию

Присутствуют потери и на термализацию и на неполное поглощение

Отсутствует термализация Максимальные потери, связанные с неполным поглощением

В солнечных элементах из одного p-n перехода всегда присутствуют фундаментальные потери. Выбор ширины запрещённой зоны осуществляется исходя из минимизации суммарных потерь для конкретного спектра

Координата

Принцип работы каскадного солнечного элемента

В каскадных солнечных элементах p-n переходы располагаются каскадом, начиная (отсчитывая от поверхности) с самого широкозонного. В идеальном (гипотетическом) каскадном солнечном элементах каждый фотон поглощается в полупроводнике с оптимальной для него шириной запрещенной зоны

Координата

Поглощение солнечного спектра однопереходным и каскадным СЭ

Каскадные солнечные элементы расширяют спектральный диапазон и более эффективно поглощают солнечный спектр

Варианты реализации каскадного солнечного элемента

Механически стыкованные субэлементы

Механическая стыковка сложный в производстве процесс

Монолитная гетероструктура

Монолитный рост производственно оправдан, но есть ограничение — все материалы используемые в структуре должны иметь близкие параметры кристаллической решетки

Формирование спектральных характеристик каскадных ФЭП

Формирование вольт-амперных характеристик каскадных ФЭП

10/11

КПД современных каскадных солнечных элементов

Прямое солнечное излучение

Кол-во переходов	Комментарий	кпд
6	2.19/1.76/1.45/1.19/.97/0.7 eV	39.2 ± 3.2
5	2.17/1.68/1.40/1.06/0.73 eV	38.8±1.2
3	InGaP/GaAs/InGaAs	37.9 ± 1.0
2	GaInP/GaAs	32.8 ± 1.0
1	GaAs	25.1 ± 0.8

Концентрированное солнечное излучение

Кол-во переходов	Комментарий	кпд
6	AlGaInP/AlGaAs/GaAs/GaInAs (2.15/1.72/1.41/1.17/0.96/0.70 eV)	47.1 ± 2.6
5		
4	GaInP/GaAs/GaInAs/GaInAs	45.7 ± 2.3
3	GaInP/GaAs/Ge	41.6 ± 2.5
2	GaInAsP/GaInAs	35.5 ± 1.2
1	GaAs	29.3 ± 1.2

ФТИ им. А.Ф. Иоффе лаб. Фотоэлектрических преобразователей

Спасибо за внимание!!!

М.А. Минтаиров

mamint@mail.ioffe.ru 194021,Санкт-Петербург, Политехническая ул., 26 тел/факс: 8(812)2972173

