

ФОТОЭЛЕКТРИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ НА ОСНОВЕ РАЗБАВЛЕННЫХ НИТРИДОВ

М.н.с., к.ф.-м.н. Баранов Артем Игоревич Лаборатория возобновляемых источников энергии СПбАУ РАН им. Ж.И. Алферова

Содержание доклада

- 1. Введение
- 2. Ростовые и экспериментальные методы
- 3. Результаты, достигнутые в СПбАУ РАН
 - СЭ с (In)GaAs(N), выращенные МПЭ на GaAs
 - СЭ с (In)GaP(AsN), выращенные МПЭ GaP и Si
- 4. Заключение

Разбавленные нитриды

Разбавленные нитриды GaPN обладают уникальными свойствами по сравнению с GaP:N (P. R. C. Kent et al. 2001, Егоров А. Ю. и др. 2011).

Рис. 1. Зависимости ширины запрещенной зоны E_g твердых растворов от параметра состава x. Расчет: штриховые линии — тройные твердые растворы GaAs_{1-x}P_x (E_g^{g} — в точке X, E_g^{G} — в точке G зоны Бриллюэна); сплошные линии — четверные твердые растворы GaAs_{1-x-y}P_xN_y, сверху вниз y = 0.006, 0.009, 0.012. Эксперимент: (1-3) — E_g четверных твердых растворов GaAs_{1-x-y}P_xN_y при y = 0.006, 0.009, 0.012. Осответственно; 4 — энергия оптических переходов в тройных растворах, легированных азотом, GaAsP:N [11].

Рис. 2. Зонная диаграмма GaN_{0.012}P_{0.988} вблизи минимума Г-долины. Величина параметра гибридизации для расчета составляла 3.8 эВ. E_V — валентная зона.

 $E_{\pm} = 0.5\{[E_C(k) + E_L] \pm [(E_C(k) - E_L)^2 + 4V_N^2 x]^{0.5}\}$

Актуальность

Добавление 1эВ-субэлемента в МСЭ GaInP/GaAs/Ge может увеличить КПД до 52% (Kurtz S.R. et al. 1997 *M. Yamaguchi et al. 2008*).

Школа молодых ученых, 07.11.2019

Солнечные элементы изопериодичные к GaAs/Ge

44% at 925x. Allen J. et al. 2013. (MBE)

31% AM0 / Campesato R. et al. 2017

Актуальность

1.1 эВ и 1.7 эВ – оптимальные значения в двухпереходном солнечном элементе (Kurtz S.R. et al. 1997). Доступность кремниевых подложек.

Однопереходные солнечные элементы изопериодичные к GaP

sample	base material	
MD421 MD523 MD323 MD752	$\begin{array}{l} GaN_{0.03}P_{0.83}As_{0.14}\\ GaN_{0.05}P_{0.69}As_{0.26}\\ GaN_{0.05}P_{0.68}As_{0.27}\\ Ga_{0.5}In_{0.5}P \end{array}$	

Fig. 6. (a) Internal quantum efficiency of three solar cells with different compositions of GaNPAs nearly latticematched to GaP and a GalnP cell for comparison, and (b) current-voltage curves of the same solar cells under AM1.5G conditions. A summary of these cells is listed in Table 1.

J.F. Geisz et al. 2002 (MOCVD)

FIG. 4. (a) EQE measurements with and without an AR coating of GaP-800 and GaNP-800. (b) EQE measurements with an AR coating of GaP-800, GaNP-800, GaNP-2000, and ME-GaP_{NW}.

S. Sukrittanon et al. 2013 (GS-MBE)

Школа молодых ученых, 07.11.2019

Двухпереходные солнечные элементы изопериодичные к Si

Fig. 1: Schematic of GaNPAs-on-silicon tandem solar cell

Fig. 5: (a) Light and dark (dashed) IV curves of tandem and single-junction cells. (b) Internal QE of tandem and single-junction cells. Tandem results are light-biased to show both junctions.

J.F. Geisz et al. 2005 (MOCVD)

Проблема: низкие времена жизни в разбавленных нитридах из-за повышенного дефектообразования!

Экспериментальные методы в СПбАУ РАН

Молекулярно-пучковая эпитаксия

Gen III Veeco с ВЧ источником азота

Постростовая обработка

Меза-структуры

Методы исследований в СПбАУ РАН

Спектроскопия полной проводимости (СПП)

- 1. Фотоэлектрические методы.
- 2. Емкостные методы.
- 3. Моделирование.

- 1. Введение
- 2. Ростовые и экспериментальные методы
- 3. Результаты, достигнутые в СПбАУ РАН
 - СЭ с (In)GaAs(N), выращенные МПЭ на GaAs
 - СЭ с (In)GaP(AsN), выращенные МПЭ GaP и Si
- 4. Заключение и перспективы

Солнечные элементы с InGaAsN слоями

Добавление 1эВ-субэлемента в МСЭ GaInP/GaAs/Ge может увеличить КПД до 52% (M. Yamaguchi et al. 2008).

▶ использование InGaAsN Проблемы: дефекты и фоновое легирование (10¹⁶см⁻³) Polojarvi et al. 2016, Johnston et al. 2003 Использование Sb Miyashita et al. 2017

Рост InGaAsN в виде субмонослойного цифрового раствора

→ Сверхрешетка InAs(0.2-0.5нм)/GaAsN(7-12нм).

Ухудшение свойств с увеличением толщины!

Влияние толщины InAs/GaAsN на фотоэлектрические свойства

0.20 эВ – источник акцепторного легирования!
0.50 эВ – цент

0.50 эВ – центры
 безызлучательной рекомбинации!
 Влияние дефектов объясняет
 поведение образцов!

- 1. Введение
- 2. Ростовые и экспериментальные методы
- 3. Результаты, достигнутые в СПбАУ РАН
 - СЭ с (In)GaAs(N), выращенные МПЭ на GaAs
 - СЭ с (In)GaP(AsN), выращенные МПЭ GaP и Si
- 4. Заключение и перспективы

Солнечные элементы с (In)GaP(As)N слоями

GaP_{0.98}N_{0.02}: прямозонный, изопериодичный к Si дефектный, Eg=2.06 эВ

Добавка As и (или) In: подавление дефектообразования, Eg в 1.5-2.1 эВ

Мало информации о свойствах (In)GaPN(As) с N>1% GaP:N - Tell et al. 1978, Кольцов и др. 1990, Kaminski et al. 1991 InGaPNAs - ОДМР (Buyanova et al. 2002-2015)

p-GaP	Материа.	л Легирование	Толщина,	Е _g , эВ
(In)GaP(As)N			НМ	
n-GaP n-GaP подложка	GaPAsN	n (1×10 ¹⁷ cm ⁻³)	1000	1.9
	GaPAsN	i	300	1.7
	InP/GaPN	J i	350	2.04

Последний образец на основе цифрового раствора InP(0.3 нм)/GaPN(10 нм).

n-GaPAsN: низкий J_{sc}, низкое V_{oc}, низкая QE.

i-GaPAsN: больший J_{sc}, большее V_{oc}, большее QE.

Дефекты могут приводить к худшим свойствам СЭ со слоем InP/GaPN!

Спектроскопия полной проводимости,

встраиванием кремния в слои!

Школа молодых ученых, 07.11.2019

i-InP/GaPN: Глубокий дефект, близкий к середине Eg!

Фотоэлектрические свойства двухпереходных СЭ с (In)GaP(As)N

Только 1 двухпереходный СЭ с GaP(N) выращен на Si (ГФЭ, Geisz et al. 2005)

Первые МСЭ на p-Si с верхним p-i-n субэлементом!

Обнаруженные дефекты приводят к худшим свойствам СЭ со слоем InP/GaPN!

Похожие дефекты с большей концентрацией в InP/GaPN.

Фотоэлектрические свойства трехпереходного СЭ с (In)GaP(As)N

Первый трехпереходный СЭ, выращенный МПЭ!

Школа молодых ученых, 07.11.2019

встраиванием азота, и увеличению КЭ!

Отжиг ведет к уменьшению концентрации дефектов, связанных со

Влияние отжига на свойства

26

Заключение

1. Метод цифровых растворов подходит для роста разбавленных нитридов InAs/GaAsN на подложках GaAs.

2. Добавление мышьяка в раствор GaPN позволяет снизить дефектообразование в GaPNAs по сравнению с цифровым раствором InP/GaPN, а постростовой отжиг позволяет еще улучшить его свойства.

3. Качество разбавленных нитридов на основе GaP еще очень низкое для использование в фотовольтаике и нуждается в дальнейшей доработке.

Спасибо за внимание!

«ФОТОЭЛЕКТРИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ НА ОСНОВЕ РАЗБАВЛЕННЫХ НИТРИДОВ»

Артем Баранов готов ответить на ваши вопросы.

Spbau.ru baranov_art@spbau.ru