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Abstract. A compact, low-cost semiconductor laser diode
producing 40 ps full width at half maximum (FWHM) single-
spike lasing pulses with 6 Watts peak power from a 20 μm
stripe width is realized in the form of a simple single-
heterostructure, grown by metal-organic chemical vapor
deposition. The structure possesses a linearly graded doping
profile extending from the pþ and nþ sides towards the p-n
junction. This laser diode is operated under room temperature
conditions and applies pumping current pulses (roughly 10 to
20 A∕2 to 3 ns FWHM) achievable with a commercially avail-
able silicon avalanche transistor as an electrical switch. © 2012
Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1
.OE.51.5.050503]
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1 Introduction
Applications such as high-precision laser radar,1,2 3-D
time-imaging methods, spectroscopy, and lifetime studies
call for small-size, low-cost, reliable sources which provide
single-spike, high-power (1 to 100 W), picosecond-range
(30 to 100 ps) optical pulses.

Since commercially available laser diodes generating
isolated single optical pulses are usually limited to peak
power levels in the sub-Watt range,3 special techniques
known as q-switching4 and gain switching5–7 are used to
overcome the power limitation. The method described in
Ref. 4, for instance, depends on a certain activation tempera-
ture, Ref. 5 applies spectral filtering to the gain-switched
pulses, Ref. 6 uses ultra-short current pulses only achievable
by means of a commercially unavailable GaAs transistor as
the electrical switch, and Ref. 7 describes a specific laser
diode structure with a very large equivalent spot size realized
by asymmetry.

Here we discuss another simple laser diode structure
that is operated under room temperature conditions and
successfully demonstrates high-power, picosecond-range

single-spike lasing in response to nanosecond pumping cur-
rent pulses. These uncomplicated pulsing requirements can
be realized by means of a silicon avalanche transistor as the
switch. In our experimental investigations8 the distinctive
structure parameters which led to picosecond behavior
were linear doping gradients of about 1.1 × 1022 cm−4

within ∼3.5 μm starting from the pþ and nþ sides and
extending towards the composite junction.

2 Laser Diode Structure
The AlGaAs/GaAs single-heterostructure (SH) laser diode
structure (Fig. 1) was grown by metal-organic chemical
vapor deposition (MOCVD) on an nþ GaAs substrate. Sub-
sequent processing makes use of a mask to form the mesa
that is dimensioned for a current stripe width of 20 μm.
The samples are cleaved to have a cavity length of 420 μm.
The rear and front crystal facets serve as laser mirrors, each
with a reflectivity of ∼0.3, which is typical according to
values quoted in the literature for uncoated gallium arsenide.

One important feature of the structure is the linear reduc-
tion in doping concentration towards the p-n junction,
starting from the nþ and pþ sides, in which the doping value
changes from 4 × 1018 to 8 × 1016 cm−3 within 3.5 μm and
the n and p dopants overlap for about 0.5 μm around the
composite junction. The heavily doped Pþ AlGaAs barrier
has a concentration higher than 4 × 1018 cm−3, the alumi-
nium content of this hetero-injector being 30%.

To operate these MOCVD SH laser diodes, a compact
pulser circuit is configured to achieve pumping current
pulses with amplitudes in the range of 10 to 35 A, having
a 2 to 3 ns full width at half maximum (FWHM), using a
commercial Si transistor operating in the high-current
avalanche mode.9

3 Measurement Results/Laser Characterization
Time-resolved spectra for the optical response to nanose-
cond-range pumping current pulses of different amplitudes
(∼11 to 27 A) were measured with a spectrograph equipped
with a streak camera. Optical time-intensity profiles were
extracted and recalculated to peak power values. The current
pulses were deduced from the voltage drop measured across
the load resistor with a 30 GHz oscilloscope (LECROYWM
830Zi-A). The measured laser pulses with their correspond-
ing current pulses are plotted against time in Fig. 2(a).* The
figure inlay [Fig. 2(b)] represents the time-resolved spectrum
of the gradient doping profile SH laser diode for a single
spike emission, here at a current pulse amplitude of 15 A.
In the case of lasing without an emission tail, the maximum
achieved peak power is 6 W, as calculated from the average
optical power (322.6 nW) measured with an optical power
meter (ANDO AQ-1135E with AQ-1972 sensor) at a
1000 Hz pulse repetition rate. The jitter-corrected FWHM
of this optical pulse is 40 ps. A 9 A threshold current
was determined in measurements using long current pulses
(30 ns) and a pulse repetition rate of 1000 Hz.

Time-resolved spectra of the optical response correspond-
ing to current pulses of Fig. 2(a), starting at the optical pulse
labelled FWHM ¼ 129.9 ps, are shown in Fig. 3. The
high amplitude current pulses add a weakly pronounced

0091-3286/2012/$25.00 © 2012 SPIE

*The laser pulses in Figs. 2(a), 2(b) and 3 are not jitter-corrected, and there-
fore the FWHM displayed is broader than in reality and the extracted peak
power has lower values.
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afterpulsing to the first spike emission. The spectra broaden-
ing may be related to an emission spread normal to the junc-
tion layer, within the active area. Time-integrated near-field
profiles are presented in Fig. 4, where ‘profile 3’ illustrates

the spatial lasing position. A typical current–voltage (I–V)
characteristic for this gradient profile SH laser diode struc-
ture exhibits a relatively high breakdown voltage (≥5 V),
measured with a semiconductor curve tracer in all diodes
of this type.

4 Conclusions
We have shown that it is possible to achieve single lasing
pulses of 6 W peak power and 40 ps FWHM without an
emission tail by means of a simple MOCVD-grown SH
laser diode structure, featuring shallow nþ and pþ doping
gradients. The diode is operated at room temperature and
exhibits uncomplicated pumping requirements, namely
nanosecond-range current pulses.

The laser structure used here belongs to the category of
single heterostructure lasers, which have been shown to yield
short, high-energy optical pulses.10 One likely additional rea-
son for the good pulse quality observed in the present work is
the following. The waveguide layer structure (which
included a thick p-GaAs layer10) in this laser is composed

Fig. 1 Schematic representation of the SH laser diode (grown by the
MOCVD method and cleaved to a length of 420 μm), including the
doping profile with its concentration values.

Fig. 2 (a) Pumping current pulses (dotted lines) and corresponding
time-resolved laser pulse waveforms* (solid lines) measured with a
streak camera having a two picosecond temporal resolution. Inlay:
(b) time-resolved spectrum of the optical response to a current
pulse of 15 A amplitude (ten intensity levels on a linear scale).

Fig. 3 Time-resolved spectra of the optical response equivalent to the optical pulses of Fig. 2(a) (starting at the 129.9 ps signal), displayed at ten
intensity levels on a logarithmic scale.

Fig. 4 Time-integrated near-field profiles showing the distribution
of light intensity over a linear distance at the diode facet perpendicular
to the p-n junction. Profile 1 marks the position of the p-n junction
(low-current spontaneous emission), profile 2 shows the position of
the AlGaAs/GaAs interface (carrier accumulation near the potential
barrier, seen through a high-photon-energy filter), and profile 3
marks the lasing position.
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of a material identical in composition to the active layer
material. This means that its effective bandgap is very
close to that of the active layer. For this reason, a certain
amount of saturable absorption is present in the p-GaAs
layer of the laser structure, which is known to sharpen
gain-switched laser pulses.11
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